• A laser guidestar is emitted from the Keck II telescope. Photo by Laurie Hatch.

Keck Telescopes

“ A great observatory like the Keck is one of those human achievements which, like the Large Hadron Collider, the Human Genome Project, William Shakespeare and Franz Schubert – render me tearful with pride at belonging to the species Homo sapiens.” — Richard Dawkins

An altitude-azimuth design gives each 10-meter Keck telescope the optimal balance of mass and strength. Extensive computer analysis determined the greatest strength and stiffness for the least amount of steel- about 270 tons per telescope. This is critically important, and not only for economic reasons. A large telescope must remain resistant to the deforming forces of gravity as it tracks objects moving across the night sky.

Chilling the interior of the insulated dome during the day controls temperature variations that could induce deformation of the telescope’s steel and mirrors. This is a big task: The volume of each dome is more than 700,000 cubic feet. Giant air conditioners run constantly during the day, keeping the dome temperature at or below freezing.

Astronomers use the telescopes in shifts of one to five nights. Time allocation committees pre-approve all observing. Assistants operate the telescopes at the summit while astronomers gather data via remote observing from observatory headquarters in Waimea. The W. M. Keck Observatory was the first facility on Mauna Kea to use remote observing.

Text courtesy of Keck Observatory.