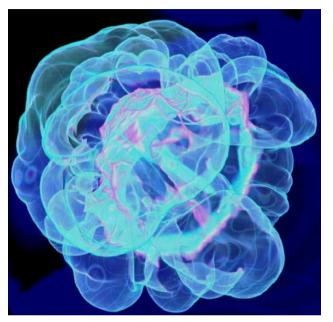

Flame Instabilities in Type Ia Supernovae

Michael Zingale (UCSC)

in collaboration with

Stan Woosley (UCSC) Ann Almgren, John Bell, Marc Day, Charles Rendleman (LBL)

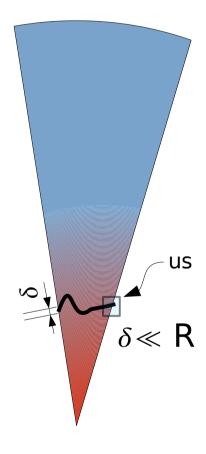

Explosion Requirements

- Flame must accelerate to $\sim 1/3 c_{c}$.
- Must produce intermediate mass elements (Si, S, Ar, Ca).
- Produces ~ 0.6 M $_{\odot}$ ⁵⁶Ni.
- How does the flame accelerate?
 - Flame instabilities (Landau-Darrieus, Rayleigh-Taylor)
 - Interaction with turbulence.

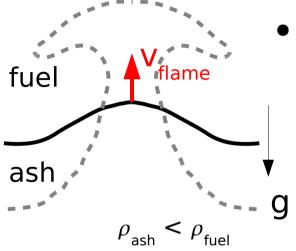
Increase surface area \Rightarrow increase flame speed.

Large Scale Simulations

- Instabilities are the dominant acceleration mechanism.
- Pure deflagrations can unbind the star.


```
Calder et al. (2004)
```

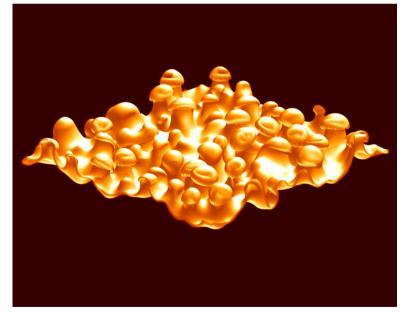
Reinecke et al. (2003)


- Some flame model is required.
 - Stellar scale $\sim 10^8$ cm
 - Flame width ~ $10^{-5} 10$ cm

Bottom-Up Approach

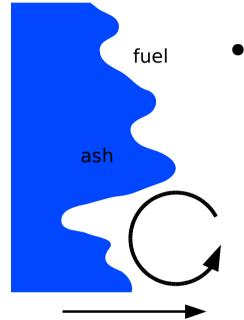
- Simulations cannot resolve the star and the flame.
 - Modern adaptive mesh methods/ massively parallel computers can handle 3 orders of magnitude
- We resolve the structure of the flame and work up to large scales
 - Parameter free.
 - Resolved calculations can be used to validate flame models.
- Look for scaling relations that will act as subgrid models.

Reactive Rayleigh-Taylor Instability

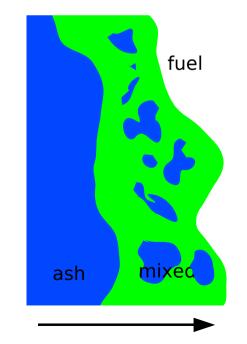

- Rayleigh-Taylor
 - Buoyancy driven instability.
 - Large amounts of surface area generated.

 Sharp-Wheeler model predicts mixed region growth:

$$h=\alpha Agt^2$$

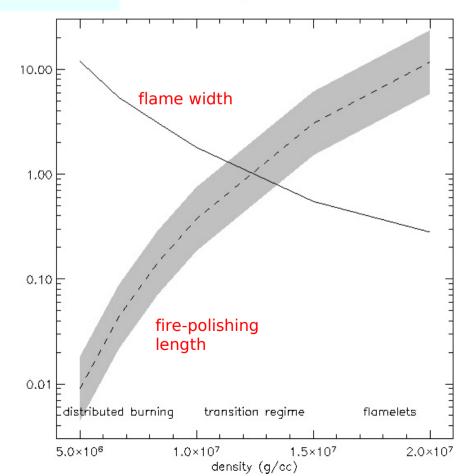

 $g_{\rm eff}$

• Reactions set a small scale cutoff to the growth of the instability: $\lambda c_n = 4\pi \frac{v_{\text{laminar}}^2}{v_{\text{laminar}}^2}$


Zingale et al. (2005)

Transition to Distributed Burning

- Flame begins as flamelet
 - Flame is a continuous surface
 - Turbulence serves solely to wrinkle the flame, increasing the area


- Transition to distributed burning regime is proposed at 10⁷ g cm⁻³
 - Mixed region of fuel + ash develops
 - May be possible to quench the flame
 - Possible transition to detonation

Low Density Flame Properties

ρ	$\Delta \rho / \rho$	v_{laminar}	l_f^{a}	$\lambda_{\rm fp}{}^{\rm b}$	М
$(\mathrm{g~cm^{-3}})$		$(\mathrm{cm}~\mathrm{s}^{-1})$	(cm)	(cm)	
6.67×10^6	0.529	1.04×10^3	5.6	0.026	3.25×10^{-6}
10^{7}	0.482	2.97×10^3	1.9	0.23	8.49×10^{-6}
$1.5 imes 10^7$	0.436	$7.84 imes 10^3$	0.54	1.8	2.06×10^{-5}

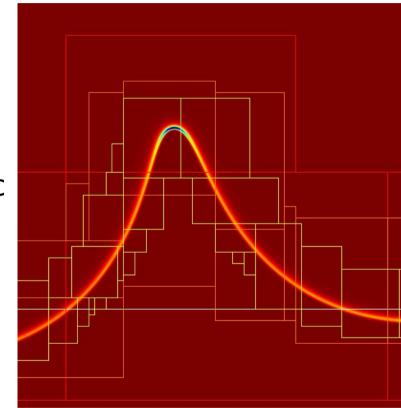
- Laminar flames are $M\ll 1$
- Around 10⁷ g cm⁻³ pass through the region where $\lambda_{
 m fp} = l_f$
 - Transition to distributed regime expected here (Niemeyer and Woosley 1997)
 - We need to resolve both scales

Low Mach Number Hydrodynamics (Bell et al. 2004 JCP 195, 677)

- Low Mach number formulation projects out the compressible components.
 - Pressure decomposed into thermodynamic and dynamic components.

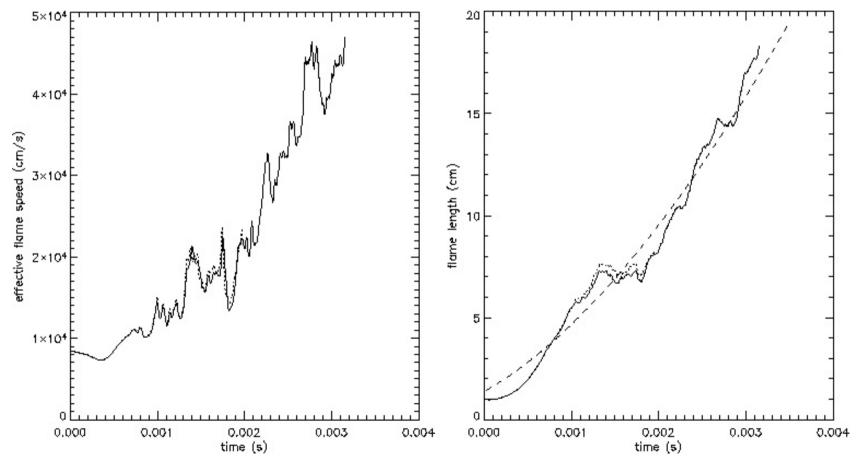
$$p(x,t) = p_0(t) + Mp_1(t) + M^2\pi(x,t)$$

- Elliptic constraint provided by thermodynamics.


$$0 \equiv \frac{Dp}{Dt} = \frac{\partial p}{\partial \rho} \frac{D\rho}{Dt} + \frac{\partial p}{\partial T} \frac{DT}{Dt} + \sum_{k} \frac{\partial p}{\partial X_{k}} \frac{DX_{k}}{Dt}$$
$$\nabla \cdot U = \frac{1}{\rho \frac{\partial p}{\partial \rho}} \left(\frac{1}{\rho c_{p}} \frac{\partial p}{\partial T} \left(\nabla \cdot \lambda \nabla T - \sum_{k} \rho \left(q_{k} + \frac{\partial h}{\partial X_{k}} \right) \dot{\omega}_{k} \right) + \sum_{k} \frac{\partial p}{\partial X_{k}} \dot{\omega}_{k} \right)$$

- Advection/Projection/Reaction formulation solves system.
- Timestep limited by |v| and not |v| + c.

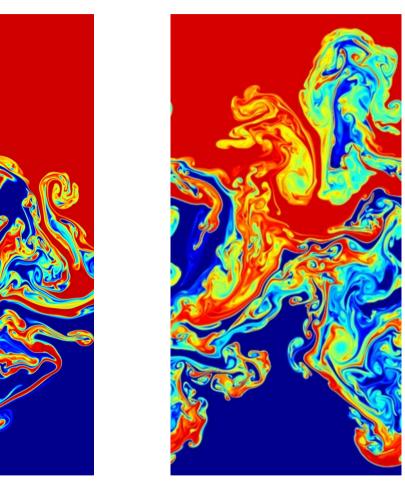
Simulation Method


(Bell et al. 2004 JCP 195, 677)

- Low Mach number hydrodynamics.
 - Advection/projection/reaction
 - Block structured adaptive mesh
 - Timestep restricted by |v| not |v| + c
 - Degenerate/Relativistic EOS used.
 - Single step ¹²C+¹²C rate
- Initialized by mapping 1-d steady-state laminar flame onto grid.
 - 5-10 zones inside thermal width.


Convergence Study

 5 points in the thermal width yields converged integral quantities (speed, length, ...)

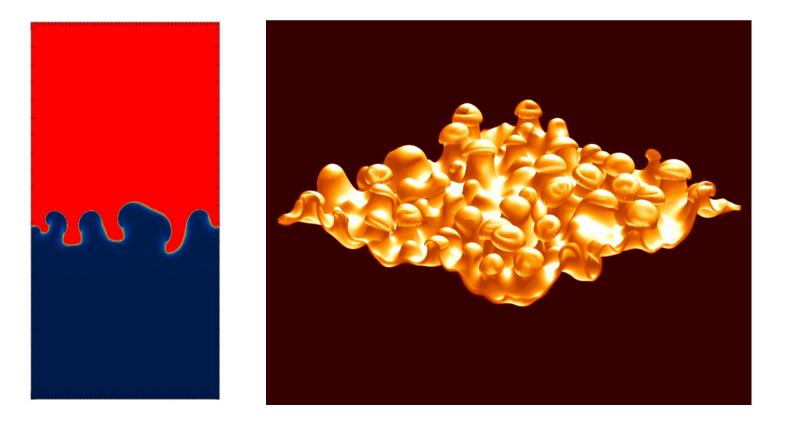


Burning sets the small scale cutoff.

Transition to Distributed Burning

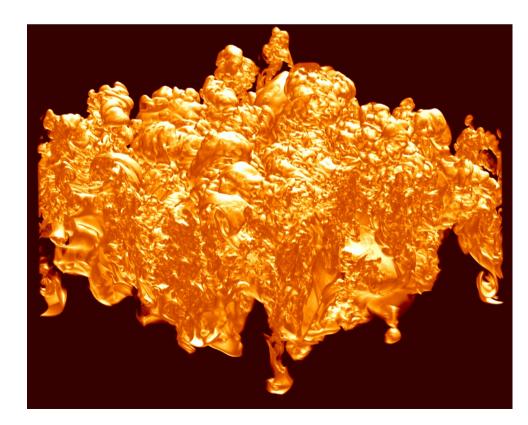
(Bell et al. 2004, ApJ, 608, 883)

ρ


- As ρ decreases, RT dominates over burning.
- At low ρ , flame width is set by mixing scale.

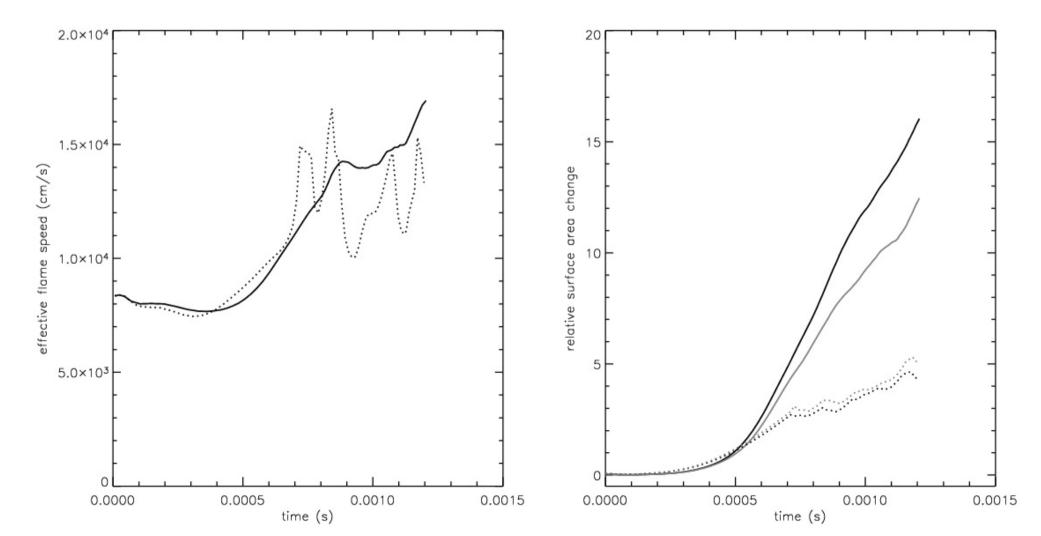
2-D Reactive RT: Transition to Distributed Burning Summary

- Accelerations to several times the laminar speed
 - Limited only by the size of the domain.
- Transition to distributed burning occurs at density of 10^7 g cm^{-3}
- Growth of reactive region scales with mixed region
 - There does not appear to be enough time for a localized transition to detonation.
 - This is something we want to test in 3-D
- Curvature/strain effects become quite important near the transition.


- 3-D analogue of 2-D runs previously studied
 - 512 x 512 x 1024 effective zones
 - Surface to volume is greater
 - Fire-polished RT dominates the early evolution.

3-D Reactive RT (Zingale et al. 2005, ApJ, submitted, astro-ph/0501655

- At late times, a fully turbulent flame propagates
 - No analogy to the 2-D case.
 - Evolution now dominated by turbulence, not Rayleigh-Taylor.



Animation of Rayleigh-Taylor Flame

3-D Reactive RT (Zingale et al. 2005, ApJ, submitted, astro-ph/0501655

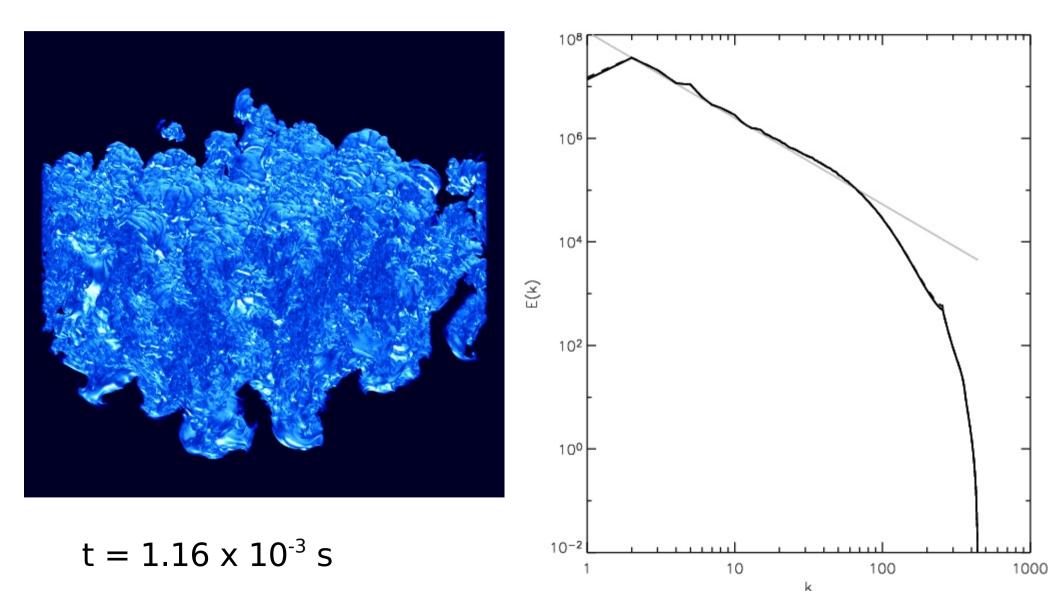
 Late time acceleration in 3-d due to interaction with flame generated turbulence

- Power spectrum can be used to determine the nature of the turbulence
 - Our domain is not periodic in all directions (inflow and outflow boundaries)
 - Velocity field is decomposed into divergence free part + effects of boundaries and compression

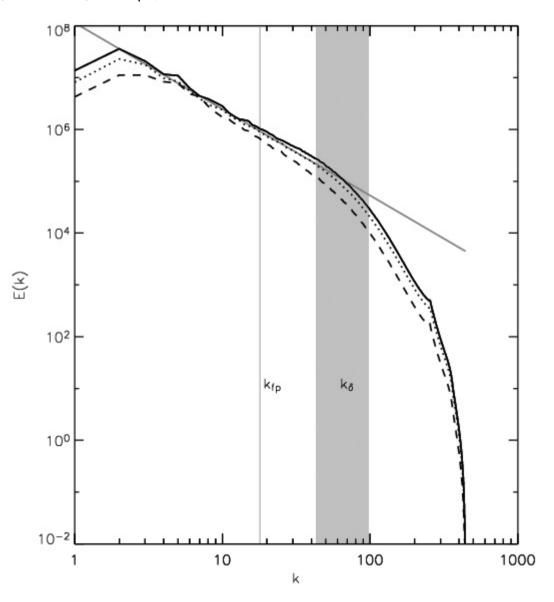
$$\mathbf{u} = \mathbf{u}_d + \nabla \phi + \nabla \psi$$

- Divergence free part is projected out.
- FFT is performed on divergence free field

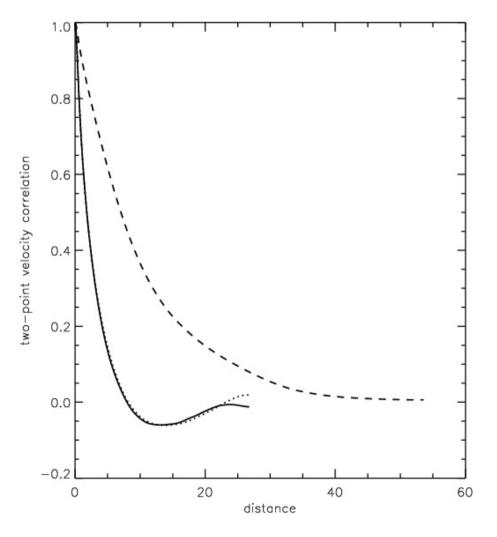
Transition to Turbulence


(Zingale et al. 2005, ApJ, submitted, astro-ph/0501655

k


Transition to Turbulence

(Zingale et al. 2005, ApJ, submitted, astro-ph/0501655


(Zingale et al. 2005, ApJ, submitted, astro-ph/0501655

- Cutoff to power spectrum converges
 - Turbulence is fully developed
 - Inertial range of > 1.5 orders of magnitude
 - Cascade falls well below fire-polishing length

(Zingale et al. 2005, ApJ, submitted, astro-ph/0501655

$$l_t^{(x)} = \frac{1}{\int_{\Omega} \mathrm{d}\Omega \, u^2} \int_{\xi=0}^{L_x/2} \mathrm{d}\xi \int_{\Omega} \mathrm{d}\Omega \, u(x, y, z) \, u(x+\xi, y, z)$$

Turbulence is anisotropic

- Integral scale in z is 5x larger than in x, y
- Turbulent intensity in z is 2-3 times larger than in x,y

Gibson scale is just resolved

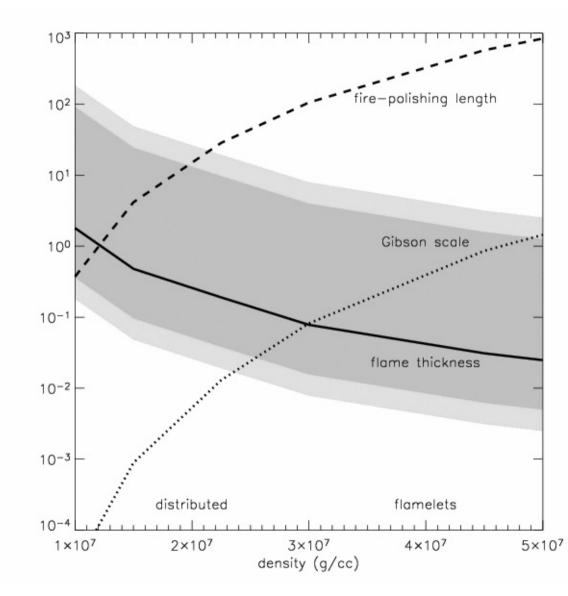
$$l_G = l_t \left(\frac{S_l}{u'}\right)^3$$

Turbulence on Small Scales (Zingale et al. 2005, ApJ, submitted, astro-ph/0501655 × 40 × 10

• Look at $E(k_x, k_y, k_z)$ to see the scales it is anisotropic

- Average over the cylindrical angle due to symmetry
- At the largest scales (small k) we are anisotropic
- At small scales (large k) we get circular \rightarrow isotropic.

3-D Reactive RT Summary (Zingale et al. 2005, ApJ, submitted, astro-ph/0501655


- Flame width, fire-polishing length, and Gibson scale are resolved on the grid.
- Flame becomes fully turbulent.
 - Anisotropic Kolmogorov spectrum becomes isotropic after a decade of turbulent cascade.
 - Turbulent flame models assuming isotropy will need to really resolve the turbulence.
 - Transition to distributed burning regime is at a higher density in 3-D.

Conclusions

- Transition to distributed burning at $\sim 10^7$ g cm⁻³
 - Transition occurs at lower density in 2-D
- Scaling of velocity with area is not purely geometric in the transition from flamelet to distributed burning regime
- Mixed region grows slower than Sharp-Wheeler model.
- Turbulence dominates in 3-D
 - Anisotropic Kolmogorov cascade
 - Isotropic on small scales
- Turbulent subgrid models assuming isotropy on small scales are a reasonable approximation.

Turbulent Flames

- Turbulent flame study at a range of densities
 - Seek to determine scaling of flame speed with turbulent kinetic energy numerically.
 - Look for local breakdown of the flame structure at low densities.

Turbulent Flames W ash Н flame propagation fuel h_{control} 0 50 0

inflowed turbulent fuel

Where Do We Go From Here?

- Parameter studies of flames interacting with inflowed turbulence.
 - Comparison to the 3-D RT calculation is also possible.
- Modification of the algorithm to allow for multiple scale heights is underway.
 - Allow for both expansion due to nuclear energy release/thermal diffusion and from the background stratification.
 - Also well suited to stellar evolution, Classical nova, Type I Xray burst, ...