Lecture 19

Black Holes and Gamma-Ray Bursts

http://apod.nasa.gov/apod/astropix.html
Some Properties of Black Holes

• Entirely defined by their mass, rotation rate, and charge.

• Believed that all the mass is concentrated at the center in a small quantum-mechanical “singularity”

• The effective density of stellar mass black holes is very high, but there are supermassive black holes in active galactic nuclei with “densities” no greater than water. They are just very big.

• The gravitational field of a black hole close to the event horizon is complicated, but by the time you are several Schwarzschild radii away, it is indistinguishable from that of an ordinary star.
Kinds of black holes:

<table>
<thead>
<tr>
<th>Class</th>
<th>Mass (solar masses)</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supermassive</td>
<td>~10^5 - 10^9</td>
<td>0.001 - 10 AU</td>
</tr>
<tr>
<td>Intermediate</td>
<td>~1000</td>
<td>~ R_{\text{earth}}</td>
</tr>
<tr>
<td>Stellar</td>
<td>~10</td>
<td>~30 km</td>
</tr>
<tr>
<td>Primordial</td>
<td>Up to ~Moon</td>
<td>Up to ~0.1 mm</td>
</tr>
</tbody>
</table>

\[
R_s = \left(\frac{2GM}{c^2} \right) = 2.96 \text{ km} \left(\frac{M}{M_\odot} \right)
\]
Event Horizon

\[R_s = \left(\frac{2GM}{c^2} \right) = 2.96 \, \text{km} \left(\frac{M}{M_\odot} \right) \]

Note that this is proportional to M. Very massive black holes – some over \(10^9\) solar masses have been inferred to exist in some Galactic centers. These black holes would be \(\sim 20\) AU in size.

Note that the “density” of a black hole scales as \(M^{-2}\).

\[\rho = \frac{M}{(4/3)\pi R^3} \propto \frac{M}{M^3} \propto \frac{1}{M^2} \]

\[= 1.8 \times 10^{16} \left(\frac{M_\odot}{M} \right)^2 \, \text{g cm}^{-3} \]
Tidal Force

\[\Delta F_{\text{tidal}} = \frac{dF_{\text{grav}}}{dr} \times d = \frac{2GMm}{r^3} d \]

\[= \left(\frac{GMm}{r^2} \right) \left(\frac{2d}{r} \right) = \text{your weight} \times \frac{2d}{r} \propto \frac{1}{M^2} \]

The tidal force would be reduced by \(1/M^2\).

A rocket crossing the event horizon of a 100,000 solar mass black hole might just survive and black holes of \(10^9\) solar masses are known in the nuclei of active galaxies.

http://en.wikipedia.org/wiki/Spaghettification

But once inside the black hole the tidal forces would continue to grow even in a supermassive black hole.
EQUIVALENCE PRINCIPLE

Gravity "bends" light
Gravitational time dilation.

An outcome of the equivalence principle, without derivation

\[t_{\text{remote}} = t_{\text{near BH}} \sqrt{1 - \frac{r_s}{r}} \]

\[r_s = \frac{2GM}{c^2} \]

http://www.upscale.utoronto.ca/PVB/Harrison/GenRel/TimeDilation.html
<table>
<thead>
<tr>
<th>Circumference of orbit</th>
<th>Time experienced by outside observer per orbiter day</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,000 km</td>
<td>1.41 days</td>
</tr>
<tr>
<td>15,000 km</td>
<td>1.73 days</td>
</tr>
<tr>
<td>12,000 km</td>
<td>2.44 days</td>
</tr>
<tr>
<td>11,000</td>
<td>3.32</td>
</tr>
<tr>
<td>10,500</td>
<td>4.50</td>
</tr>
<tr>
<td>10,250</td>
<td>6.4</td>
</tr>
<tr>
<td>10,050</td>
<td>14.18</td>
</tr>
<tr>
<td>10,025</td>
<td>20.02</td>
</tr>
<tr>
<td>10,005</td>
<td>44.73</td>
</tr>
<tr>
<td>10,000.75</td>
<td>115.47</td>
</tr>
<tr>
<td>10,000.50</td>
<td>141.42</td>
</tr>
<tr>
<td>10,000.25</td>
<td>200.00</td>
</tr>
<tr>
<td>10,000.125</td>
<td>282.84</td>
</tr>
<tr>
<td>10,000.005</td>
<td>447.21</td>
</tr>
<tr>
<td>10,000.001</td>
<td>3162.28 days</td>
</tr>
</tbody>
</table>

For a black hole with circumference 10,000 km

About 500 solar masses
If you could go inside what would you see?

Mostly vacuum. The collapse continues to a “point” at the center. The event horizon is just a cloak that prohibits (outwards) communication with the universe.

The matter piles up at the center and the density classically can approach infinity. But quantum mechanics does not allow an infinite mass energy density to exist at a geometrical point.
At this time there is no agreed upon theory that unites the basics of quantum mechanics and general relativity.

However, combinations of the fundamental constants, G, c, and h set some scales for quantum gravitational effects.
Planck mass \(\left(\frac{c\hbar}{G} \right)^{1/2} = 2.2 \times 10^{-5} \text{ gm} \)

Planck time \(\left(\frac{G\hbar}{c^5} \right)^{1/2} = 5.4 \times 10^{-44} \text{ sec} \) \(\hbar = \frac{h}{2\pi} \)

Planck length \(\left(\frac{G\hbar}{c^3} \right)^{1/2} = 1.6 \times 10^{-33} \text{ cm} = \frac{G \text{ (Planck mass)}}{c^2} \approx R_S \text{ for the Planck mass} \)

Planck density \(= \left(\frac{\text{Planck mass}}{(\text{Planck length})^3} \right) = 5 \times 10^{93} \text{ gm/cm}^3 \)

\[c = 2.99 \times 10^{10} \text{ cm s}^{-1} \]
\[G = 6.67 \times 10^{-8} \text{ dyne cm}^2 \text{ gm}^{-2} \]
\[\hbar = 1.05 \times 10^{-27} \text{ erg s} \]

\[
\frac{\hbar c}{G} = \left(\frac{2.99 \times 10^{10}}{6.67 \times 10^{-8}} \right) \left(\frac{1.05 \times 10^{-27}}{1} \right) \frac{\text{cm}}{\text{s}} \frac{\text{gm}^2}{\text{dyne cm}^2} \text{ erg s}
\]

\[
= 4.70 \times 10^{-10} \frac{\text{gm}^2 \text{ erg}}{\text{dyne cm}} = 4.70 \times 10^{-10} \text{ gm}^2
\]

\[
\left(\frac{\hbar c}{G} \right)^{1/2} = 2.17 \times 10^{-5} \text{ gm}
\]
Uncertainty Principle

(Uncertainty in energy)(Uncertainty in time) \sim \hbar

\left(\text{Planck Mass} \times c^2 \right) \left(\text{Planck time} \right) \sim \hbar

\left(\frac{c\hbar}{G} \right)^{1/2} c^2 \left(\frac{G\hbar}{c^5} \right)^{1/2} = \hbar

Space time viewed on a scale of the Planck length can be expected to look very unlike the space-time of common existence:

- Curled up dimensions?
- Quantum foam?
- Time undefined

Can the constants G, c, and \hbar be assumed to stay constant across so many decades of extrapolation?
Hawking Radiation

The strong gravitational field around a black hole causes pair production.

If a pair is produced outside the event horizon, then one member will fall back into the black hole, but the other member will escape and the black hole loses mass.

The amount of mass lost is greater for small black holes, therefore quantum sized black holes disintegrate in very short timescales.
Hawking Penrose radiation

\[\tau \sim 8.4 \times 10^{-17} \left(\frac{M}{kg} \right)^3 \text{ sec} \]

2 \times 10^{67} \text{ years for a 1 solar mass BH but a Hubble time for } 10^{14} \text{ gm}
Formation of extragalactic jets from black hole accretion disk
A jet stretches from the core of the giant elliptical galaxy M87 5000 light years
SS433 - a “microquasar” lies in the supernova remnant W50 (artist’s conception). Red and blue shifts seen from jet. Jet speed 0.26 c. Period 13.1 days (in Aquila, 5.5 kpc).
Gamma-Ray Bursts
A *Cosmic Gamma-Ray Burst*, GRB for short, is a brief, bright flash of gamma-rays lasting typically about 20 seconds that comes from an unpredictable location in the sky.

Some, in gamma-rays, are as bright as the planet Venus. Most are as bright as the visible stars. It is only because of the Earth’s atmosphere and the fact that our eyes are not sensitive to gamma-rays that keep us from seeing them frequently.

With appropriate instrumentation, we see about one of these per day at the Earth. They seem never to repeat from the same source.
The Vela 5 satellites were placed in orbit by the Advanced Research Projects of the DoD and the AEC. Launched on May 23, 1969 into high earth orbit (118,000 km), this pair of satellites and their predecessors, Vela 4, discovered the first gamma-ray bursts. The discovery was announced in 1973.
First Gamma-Ray Burst

The Vela 5 satellites functioned from July, 1969 to April, 1979 and detected a total of 73 gamma-ray bursts in the energy range 150 – 750 keV (n.b., Greater than 30 keV is gamma-rays). Discovery reported Klebesadel, Strong, and Olson (1973).
Gamma-ray bursts (GRBs) discovered 1969 - 72 by Vela satellites. Published by Klebesadel, Strong and Olson (1973)
An Observational Dilemma

The gamma-ray detectors could detect brightness and spectra but had only crude angular resolution (> several degrees).

After the burst was over, these huge error boxes showed nothing particularly unusual (or maybe too many unusual things).

We thus had no idea of the nature of the objects emitting the bursts – and hence no knowledge of their burst or energy.

Early on some weak indication of association with the Galactic disk
• Interstellar warfare

• Primordial black hole evaporation

• Flares on nearby stars

• Distant supernovae

• Neutron star quakes

• Comets falling on neutron stars

• Comet anti-comet annihilation

• Thermonuclear explosions on neutron stars

• Name your own

During the 1970’s until the early 90’s. uncertainty in distance – a factor of one billion.
By the late 90’s we knew …

GRBs come in at least two flavors

Shortest 6 ms
GRB 910711

Longest ~2000 s
GRB 971208

short-hard

long-soft

1996
In the late 90’s

Bright long bursts are red; short fainter bursts are purple. The rest are intermediate. Note – no correlation with Galactic disk. Each burst was localized to about 1 degree.
What could do that?

The high degree of isotropy – with us at its “center” implied either an extremely close source (Ooort cloud? nearby stars?) or something so far away that the distance from here to the center of the Milky Way (8.5 kpc) meant nothing.

Debate Lamb vs Paczynski (1995) similar to Curtis Shapley debate of (1920)
Intermezzo – HETE – 1 (High Energy Transient Explorer)

Launch April 11, 1996; died April 14, 1996

175 kg; Instruments – FREGATE, WXM, UVC, SXC

(HETE – 2 – launched September 9, 2000)
BeppoSax GRB 970228 (discovered with WFC)

Feb 28, 1997 (8 hr after GRB using MECS) March 3, 1997 (fainter by 20)

Each square is about 6 arc min or 1/5 the moon’s diameter
Looked hard and found a little faint galaxy when the OT faded
Spectrum of the host galaxy of GRB 970228 obtained at the Keck 2 Telescope. Prominent emission lines of oxygen and neon are indicated and show that the galaxy is located at a redshift of $z = 0.695$. (Bloom, Djorgovski, and Kulkarni (2001), ApJ, 554, 678. See also GCN 289, May 3, 1999.)
From the red shift a distance could be inferred – billions of light years. Far, far outside our galaxy.

From the distance and brightness an energy could be inferred.

\[1.6 \times 10^{52} \text{ erg in gamma rays alone} \]

This is 13 times as much energy as the sun will radiate in its ten billion year lifetime, but emitted in gamma-rays in less than a minute. It is 2000 times as much as a really bright supernova radiates in several months.
Two HST images of GRB 990123. The image on the left was taken February 8, 1999, the one on the right March 23, 1999. Each picture is 3.2 arc seconds on a side. Three orbits of HST time were used for the first picture; two for the second – hence the somewhat reduced exposure.
The spectrum of host galaxy (Kelson et al, IAUC 7096) taken using the Keck Telescopes gives a redshift of 1.61.

Given the known brightness of the burst (in gamma-rays) this distance implies an energy of over several times 10^{54} erg. About the mass of the sun turned into pure energy.

Had this burst occurred on the far side of our Galaxy, at a distance of 60,000 light years, it would have been as bright – in gamma-rays – as the sun. This is ten billion times brighter than a supernova and equivalent to seeing a one hundred million trillion trillion megaton explosion.
Now from the study of many GRBs

• “Long-soft” bursts are at cosmological distances

SWIFT gives an average z for 41 bursts with good distance determinations of 2.6

The farthest GRB, so far, is at $z = 8.2$

Fiore et al (2007)
Age of the Universe (Billions of years)

Swift bursts
- Mean: $z = 2.24$
- Median: $z = 1.95$

pre-Swift bursts
- Mean: $z = 1.35$
- Median: $z = 1.02$

There are also mentions of:
- Most distant quasar ($z=7.08$)
- Most distant galaxy ($z=8.55$)

The graph shows a distribution of events across different values of z. The x-axis represents the redshift (z) and the y-axis represents the number of events.
Inferred energy if bursts emit their radiation equally at all angles extends up to 10^{54} erg.

$$M_\odot c^2 = 1.8 \times 10^{54} \text{ erg}.$$
But are the energies required really as great as 10^{54} erg?

If the energy were beamed to 0.1% of the sky, then the total energy could be 1000 times less.

Nothing seen down here
But then there would be a lot of bursts that we do not see for every one that we do see. About 300 in fact.
GRBs are beamed and their total energy in relativistic ejecta is $\sim 10^{51}$ erg.

As a relativistic jet decelerates we see a larger fraction of the emitting surface until we see the edges of the jet. These leads to a panchromatic break slope of the afterglow light curve.
But what about the long soft bursts?

Shortest 6 ms
GRB 910711

Longest ~2000 s
GRB 971208

short-hard

long-soft
LS-GRBs occur in star-forming regions

The green circles show long soft GRB locations to an accuracy of 0.15 arc sec.

Conclusion: GRBs trace star formation even more than the average core-collapse supernova. They are thus to be associated with the most massive stars. They also occur in young, small, star forming galaxies that might be metal poor.
LS-GRBs, at least frequently, occur in simultaneous conjunction with supernovae of Type Ic
The Collapsar Model
(Woosley 1993)
Usually massive stars make supernovae. Their iron core collapses to a neutron star and the energy released explodes the rest of the star.

But what if the explosion fizzled? What if the iron core collapsed to an object too massive to be a neutron star – a black hole.

A star without rotation would then simply disappear.

But what if the star had too much rotation to all go down the (tiny) black hole?

If supernovae are the observational signal that a neutron star has been born, what is the event that signals the birth of a black hole?
In the vicinity of the rotational axis of the black hole, by a variety of possible processes, energy is deposited.

The exact mechanism for extracting this energy either from the disk or the rotation of the black hole is fascinating physics, but is not crucial to the outcome, so long as the energy is not contaminated by too much matter.

7.6 s after core collapse; high viscosity case.
3-D Special Relativistic Hydro Simulation of Collapsar Jet

Weiqun Zhang, S.E. Woosley & A. Heger

Model 3BL

$t = 0.00 \text{ s}$

log rho

(10^{10} \text{ cm})
Dana Berry (Skyworks) and SEW
Predictions of the Collapsar Model

✓ Gamma-ray bursts should occur in star regions

✓ GRBs should be accompanied by Type I b or c supernovae (the jet doesn’t get out of a giant star in time, need to lose envelope)

✓ GRBs should be favored by low metallicity and high redshift
Proto-magnetars

Magnetars have fields $\sim 10^{18-15} \text{ G}$
They might be born as fast rotators
Efficient dynamo implies $P \sim t_{\text{core}} \sim \text{ms}$

Millisecond magnetar have the correct energy

$$E_{\text{rot}} = 2 \times 10^{33} \left(\frac{P}{1 \text{ ms}} \right)^{-2} \text{ ergs}$$

Pro
NS are naturally associated to core collapse SN
Less angular momentum required than BH-AD
NS population can explain transition from asymmetric SNe to XRFs to GRBs

Pulsars have relativistic winds

Typical spin-down times are $\sim 100-1000 \text{ sec}$

$$E = 10^{49} \left(\frac{P}{1 \text{ ms}} \right)^{-4} \left(\frac{B_{\text{eq}}}{10^{15} \text{ G}} \right)^{2} \text{ ergs s}^{-1}$$

Magnetars can have massive progenitors

Westerlund I

Magnetar

Chandra X-Ray

Faintest Cluster Members are O7 (Muno 2006)
Assume a pre-existing supernova explosion in the stripped down core of a 35 solar mass star.

Insert a spinning down 1 ms magnetar with $B \sim 10^{15}$ gauss.

Two phase wind:

Initial magnetar-like wind contributes to explosion energy. Analog to pulsar wind. Sub-relativistic

Later magnetically accelerated neutrino powered wind with wound up B field makes jet.
But what about the long soft bursts?

Shortest 6 ms
GRB 910711

Longest ~2000 s
GRB 971208
One Model: Merging Neutron Stars
Starting in May 2005, about a half dozen short hard bursts were localized by the HETE-2 and SWIFT satellites.

These bursts did not come from star forming regions, and in fact showed all the characteristics expected of merging neutron stars. It is widely believed that merging neutron stars (and neutron stars merging with black holes) have now been observed as short hard gamma-ray bursts. In the next 10 - 15 years, gravitational radiation detectors may detect these mergers.

These GRBs are much closer than the LS GRBs and have ~30 times less energy.
A cartoon of the electromagnetic radiation emitted by a black hole after the merger of two compact objects. The GRB is produced by the shock generated after the accretion of material into the black hole. The kilonova is produced by radioactive decay of the ejecta around the black hole. The pink blobs represent the circumburst medium. These authors showed that the kilonova emission would actually last longer and be redder than quoted in this figure. Figure 1 of Metzger & Berger.
GRB130603B
Point source identified in a galaxy 3 hours later
10 days later a strong infrared source was identified

Afterglow or kilonova??
A 10^{53} erg event situated 30,000 light years away (distance from here to the Galactic center) would give as much energy to the earth in 10 seconds as the sun – equivalent to a 200 megaton explosion.

Does it matter having an extra sun in the sky for 10 seconds?

Probably not. This is spread all over the surface of the earth and the heat capacity of the Earth’s atmosphere is very high. Gamma-rays would deposit their energy about 30 km up. Some bad nitrogen chemistry would happen.

Noticeable yes, deadly to all living things – No.
Biological Hazards of Gamma-Ray Bursts

<table>
<thead>
<tr>
<th>Distance (kpc)</th>
<th>Events /10 by</th>
<th>Megatons</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100 – 1000</td>
<td>200</td>
<td>Some ozone damage, EMP acid rain</td>
</tr>
<tr>
<td>1</td>
<td>1 – 10</td>
<td>20,000</td>
<td>Ozone gone, acid rain, blindness 2nd and 3rd degree burns*</td>
</tr>
<tr>
<td>0.1</td>
<td>0.01 – 0.1</td>
<td>two million</td>
<td>Shock waves, flash incineration, tidal waves, radioactivity ((^{14}\text{C})) End of life as we know it.</td>
</tr>
</tbody>
</table>

* Depends on uncertain efficiency for conversion of energetic electrons to optical light
Things I am working on now:

• Type Ia supernova models
• Presupernova evolution
• Magnetar powered supernovae
• Shock break out
• Pulsational pair instability supernovae
• Anything that blows up…