
Leap-second considerations in
distributed computer systems

Markus G. Kuhn

Computer Laboratory

http://www.cl.cam.ac.uk/~mgk25/

ITU-R SRG 7A – Colloquium on the UTC timescale
Torino, 28–29 May 2003

Applications of synchronized
computer clocks

accurate user display, distributed activity scheduling,
transmission rate control, performance monitoring, interval timing,
unique timestamp generation, mergable distributed logs,
causality checking, replacement for Lamport/vector clocks

Typical application needs

→ simple and robust link to civilian time zones

→ monotonicity & robust measurement of time intervals

→ scalar representation

→ compatibility & synchrony

→ no rare events and difficult to test special cases

2

Computer-clock hazards and disruptions

→ increasingly unpredictable instruction execution times
preemptive scheduling, context switches, virtual memory,
interrupts, power-saving modes, system bus arbitration,
cache latency, pipelining, multiprocessing, hyperthreading

→ lack of resolution
Traditional filesystem timestamp resolution: 1 s

→ lack of synchronization

→ crystal frequency error (10−4) and instability (10−5)

→ operator error

→ UTC leap seconds

Standard computer clocks are not well-suited or even designed for pre-
cision time-interval measurements and are therefore rarely used for this
purpose directly.

3

Scalar time

→ Computer clock = oscillator + counter

→ raw counter value C mapped to standardized scalar time scale
T , in the simplest case by a (piecewise) linear relation:

T =
1

f
· C + e

→ Traditional human clock-value notation is broken-down time:

YYYY-MM-DD hh:mm:ss.sss

→ Established conventions to map broken-down time to standard-
ized scalar time scale, e.g. POSIX “Seconds since the Epoch”.

4

“Seconds since the Epoch” – POSIX:1996
“A value to be interpreted as the number of seconds between a specified time and
the Epoch.

A Coordinated Universal Time name (specified in terms of seconds (tm_sec), min-
utes (tm_min), hours (tm_hour), days since January 1 of the year (tm_yday), and
calendar year minus 1900 (tm_year)) is related to a time represented as seconds
since the Epoch, according to the expression below. [...]

tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
(tm_year-70)*31536000 + ((tm_year-69)/4)*86400 ”

Portable Operating System Interface (POSIX) — Part 1: System Application Program Interface
(API). ISO/IEC 9945-1:1996 (IEEE Std 1003.1-1996). Same text in earlier versions.

The classic definition of Unix time was unaware of leap seconds. It effectively
specified two contradicting values:

→ A count of SI seconds (leap-second days would count 86401 s)

→ An encoding of a YYYY-MM-DD hh:mm:ss time value as a sin-
gle integer, in which both 23:59:60 and the immediately following
00:00:00 are represented by the same value

5

“Seconds since the Epoch” – POSIX:2001

“A value that approximates the number of seconds that have elapsed since the
Epoch. A Coordinated Universal Time name (specified in terms of seconds (tm_sec),
minutes (tm_min), hours (tm_hour), days since January 1 of the year (tm_yday),
and calendar year minus 1900 (tm_year)) is related to a time represented as sec-
onds since the Epoch, according to the expression below. [...]

tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
(tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400

The relationship between the actual time of day and the current value for seconds
since the Epoch is unspecified.

How any changes to the value of seconds since the Epoch are made to align to
a desired relationship with the current actual time are made is implementation-
defined. As represented in seconds since the Epoch, each and every day shall be
accounted for by exactly 86400 seconds.”
http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap04.html#tag_04_14

6

Handling leap seconds in scalar time

A get_time() implementation in an operating systems could

→ jump back 1 s at leap-second start: 23:59:59.1 = 23:59:60.1

→ jump back 1 s at leap-second end: 23:59:60.1 = 00:00:00.1

→ also return a leap-second-in-progress indicator bit

→ stop clock during leap second: 23:59:60.1 = 23:59:60.9

→ block access to clock during leap second
(system call during leap second will return after 00:00:00.0)

→ suspend all processing during leap second

→ abort with error code

→ overflow minor component in struct: 2× 109 > nsec ≥ 109

→ change clock frequency before, around or after leap second

7

Existing practice

→ Berkeley Unix introduced the adjtime() system call. Appli-
cations can use it to adjust the system clock phase gently. It
temporarily alters the system clock frequency by a small per-
centage to preserve clock monotonicity.

→ Early network time-synchronization systems used adjtime() or
equivalents to control system clocks. Clocks would gradually
converge after a leap second back to UTC within a few minutes,
but not in a compatible way, because of different update times
and rates.

→ David Mills’ Unix kernel modification (Mills, 1994) receives a
leap-second announcement from NTP software and automati-
cally performs leap second correction at the end of the UTC day.
It is today widely implemented in several widely used POSIX
operating systems.

8

→ A new special system call ntp_gettime() returns “Seconds
since the Epoch” with leap-second-in-progress bit, enabling ap-
plications to output 23:59:60.

→ Most adoptions of Mills’ kernel modification cause the output
of the standard clock function to jump back at the start of
23:59:60 by one second, leading to non-monotonic timestamps
and unlimited relative errors in time-interval measurements

Proposed solution

Define a standardized variant of UTC for use in computer applications,
which adjusts the clock phase gradually by 1 s near a leap second,
similar to adjtime(), but more exactly and carefully specified.

9

Smoothed Coordinated Universal Time (UTS)
→ UTS is a YYYY-MM-DD hh:mm:ss clock – like UTC – but

seconds are limited to the range 00 to 59 (no leap seconds).

→ UTC can be converted into UTS if there is a warning of an
approaching leap second at least 20 minutes in advance.

→ UTS equals UTC, except for a linearly increasing offset of up
to 1 s during the last 20 minutes of a UTC leap-second day.

→ On a day with a positive UTC leap second, the last 1000 sec-
onds of UTS are stretched to 1001 ms each, that is the rate of
the UTS clock is reduced by 0.1% from 23:43:21 to 24:00:00.

→ On a day with a negative UTC leap second, the last 1000
seconds of UTS are reduced to 999 ms each, that is the rate of
the UTS clock is increased by 0.1% from 23:43:19 to 24:00:00.

→ All UTS days account for 86400 seconds, but the last 1000 UTS
seconds can differ from UTC/SI seconds by 0.1% in duration.

10

UTS near positive UTC leap second

UTC UTS

23:43:20.000 23:43:20.000
23:43:21.000 23:43:21.000 <- end of UTS = UTC
23:43:22.000 23:43:21.999
23:43:23.000 23:43:22.998
23:43:24.000 23:43:23.997
... 995 seconds later ...

23:59:59.000 23:59:58.002
23:59:60.000 23:59:59.001 <- leapsec starts
00:00:00.000 00:00:00.000 <- UTS = UTC again
00:00:01.000 00:00:01.000

11

UTS near negative UTC leap second

UTC UTS

23:43:18.000 23:43:18.000

23:43:19.000 23:43:19.000 <- end of UTS = UTC

23:43:20.000 23:43:20.001

23:43:21.000 23:43:21.002

23:43:22.000 23:43:22.003

23:43:23.000 23:43:23.004

... 995 seconds later ...

23:59:58.000 23:59:58.999

00:00:00.000 00:00:00.000 <- UTS = UTC again

00:00:01.000 00:00:01.000

12

UTS design rationale
→ Linear interpolation avoids discontinuities, ensures monotonic-

ity, and limits errors of time-interval measurements to 0.1%.

→ Linear interpolation is easier to describe, understand, and im-
plement than interpolation with higher-degree polynomials.
UTS is not intended to control movement of large masses, where more complex inter-
polation techniques (e.g., B-splines) that minimize control forces might be preferred.

→ Stretching the correction over 1000 seconds leads to nice dec-
imal UTS display values at the start of UTC seconds.
This would not be the case if correction interval lasted an integral number of minutes.

→ The 1000 seconds advance notice for an upcoming leap second
leaves plenty of time for error checking and correction in a noisy
time signal that starts to announce leap seconds 59 minutes
before the end of the day (e.g., DCF77).

→ Where a UTS clock is used to control the output of audio
signals (e.g., Internet telephony), the frequency change remains
with 0.1% just below human perception limits (about 0.3%).

13

→ The temporary frequency error introduced by UTS is not worse
than 10× the error of the low-cost crystal oscillators commonly
used in computers.

→ Centering the leap second in the compensation interval would
have made it possible to maintain |UTS− UTC| < 500 ms.

This approach is deliberately not proposed here for two reasons:

• The leap-second warning in most UTC transmissions dis-
appears immediately after the leap second occurs. Keeping
the period in which UTS and UTC differ entirely before
the end of the leap second enables receivers to convert
UTC into UTS correctly even if switched on directly after
a leap second.

• BBC beeps and many deadlines coincide with the start of
a full hour, therefore it is convenient if UTS and UTC are
identical there, and not 500 ms apart.

14

UTS application areas

UTS is intended to be used as the basis for defining the internal clock
representation used in information systems that have problems handling
UTC leap seconds.

UTS is not intended to be used

→ for radio time broadcast signals

→ for the definition of national and regional civilian time

→ inside the NTP protocol

→ in reference clock hardware

Conversion from UTC to UTS will typically be performed in the kernel
clock driver of a computer operating system.

Good time signal receivers should be configurable to output any of
UTC, UTS, TAI, UT1, etc.

15

Advantages of UTS over UTC
→ UTS will practically eliminate the potential of leap-second in-

duced disruptions if it becomes the formally standardized, prop-
erly documented, commonly used and recommended form of
Universal Time for use in distributed computer systems.

→ UTS allows application software, network protocols and pro-
grammers to remain completely ignorant of leap seconds.

→ Only few experts will need to be aware of leap seconds and test
their designs for them, namely implementors and operators of

• time signal transmitters and receivers

• reference clocks

• operating system kernel clock drivers

• network time synchronization software

• certain distributed scientific instruments

16

UTS and the need to revise UTC

→ Discussions on redefining UTC are mainly motivated by con-
cerns about hypothetical problems that might arise from the
inability of established computer interfaces to handle 23:59:60.

→ Concerns were caused by a lack of formal standards that specify
recommended best practice for handling leap seconds in appli-
cation program interfaces and data formats.

→ Use of UTS as recommended practice and answers sufficiently
the concerns of potential leap-second induced disruptions in
distributed computer systems.

→ Adoption of UTS as a formal standard will eliminate the most
significant motivation for redefining UTC.

17

Remarks on other reasons to revise UTC

→ Existing satellite navigation systems use both TAI and UTC
internally, along with leap-second announcements. They can
therefore easily convert between the two internally, thereby cir-
cumventing disruptions that could be caused by leap seconds.

Bugs in early GLONASS components that had led to leap-
second glitches appear to have been fixed years ago.
See the GLONASS user advisory notes quoted in
http://www.mail-archive.com/leapsecs@rom.usno.navy.mil/msg00086.html.

With the help of leap-second announcements, state variables
and PN-generator phases can be adjusted instantaneously with
modest hardware/software measures, to handle even a signal
phase locked to UTC instead of TAI.

18

→ A leap-second free time scale would certainly simplify the de-
sign and use of distributed geophysical and astronomical instru-
ments.

• UTS would there be just as disruptive as leap seconds.

• TAI should be made available more widely, for the benefit
of such specialist communities.

• A formally standardized notation for TAI timestamps that
differs significantly from the notations used with UTC/UTS
will help to avoid confusion.

• The needs of small specialist communities can hardly jus-
tify the dissociation of civilian time zones from the rotation
of the earth, thereby breaking a tradition that stretches
over the entire recorded human history.

19

Data useful in time broadcast signals
→ UTC and TAI (or TAI−UTC)

→ nearest TAI−UTC change (past or future)

→ list of all past and announced future TAI−UTC changes

→ UT1 and other earth-orientation parameters

→ list of all civilian time zones in reception range including:

• DST change-over algorithm

• history of UTC offset

• geographic boundary polygons (progressive sampling)

• names and acronyms (multilingual) for the time zone

• names, acronyms, established codes (ISO 3166, etc.) and
geographic coordinates for associated locations

→ service status and related announcements

→ regional emergency warning (type, geographic center, radius)

20

LF time signal broadcast

Existing services (JJY, MSF, WWVB, HGB, DCF77, BPC, etc.) grow
in popularity, in spite of global UHF satellite navigation signals:

→ longwaves penetrate buildings and mountain ranges well

→ low bitrate and simple code can be processed with the lowest-
power microcontrollers (4-bit, 32 kHz, 1k ROM) commonly
used in watches

→ miniature ferrite core antennas provide sufficient sensitivity for
50 kW transmitter to cover large parts of a continent

→ cheap AM decoder circuit with low-tolerance components

LF time signals are today used ubiquitously in low-cost mass-market
products (wrist watches, alarm clocks, personal computers, etc.)

Problems: diverse frequencies (40–80 kHz), incompatible code formats,
disseminated data not comprehensive, lack of global standard.

21

Wishlist for next-generation LF service

→ single carrier frequency ⇒ simple global antenna design

→ 20–50 bit/s data rate, efficient use of receiver bandwidth

→ within 10 s: acquisition of crude UTC and TAI (� 10 ms)

→ within 60 s: DUT1, leap second announcement, good UTC/TAI
(� 10 µs) and crude 2D receiver position (� 1 km) with three
transmitters in range

→ within 1000 s: acquisition of full TAI-UTC history, earth-orien-
tation parameters, transmitter status information, descriptions
of civilian time zones, better position and time

→ time-division multiple access (TDMA) to permit receiving sev-
eral stations for location fixing even near one of the transmitters

→ open international standard signal specification, royalty free

22

Conclusions

→ Leap seconds and current UTC definition pose no significant
problem for distributed computer systems.

→ Only näıve implementations of leap seconds (23:59:60) in com-
puters with externally synchronized clock causes disruption.

→ Standardized convention (UTS) for a variant of UTC with short-
term rate adjustment is an adequate and practical solution.

→ Timekeeping and timestamping considerations in distributed
computers are not a significant reason for decoupling civilian
time from earth orientation.

→ For special applications (e.g., astronomical/geophysical instru-
ments), wider availability of TAI would be desirable.

23

Proposed ITU-R action
→ No change to basic principles of 1972 UTC definition.

→ Standardize a smoothed variant of UTC for use in appli-
cations with low-to-medium frequency accuracy requirements
(application program interfaces, asynchronous communication
protocols, etc.).

→ Prepare comprehensive recommendation on time broad-
cast data (TAI, leap second announcements, time zones).
Recommendation to upgrade existing services to provide con-
forming data set in backwards compatible way.

→ Standardize comprehensive time broadcast services —
both standalone and piggy-backed on other services (LF, GSM,
WLAN, TV, phone dial tone, etc.). Where feasible also add
positioning information. Recommend this new format for all
new services and drop in ITU-T TF.583 the recommendation
that new services should copy code of an existing service.

24

References
• R.A. Nelson, D.D. McCarthy, et al.: The leap second: its history and possible future.

Metrologia, Vol. 38, pp. 509–529, 2001.

• Dennis D. McCarthy: Astronomical Time. Proceedings of the IEEE, Vol. 79, No. 7, pp. 915–
920, July 1991.

• David L. Mills: Unix kernel modifications for precision time synchronization. Electrical
Engineering Department Report 94-10-1, University of Delaware, October 1994.

• Judah Levine, David Mills: Using the Network Time Protocol (NTP) to transmit Interna-
tional Atomic Time (TAI). Proc. Precision Time and Time Interval (PTTI) Applications
and Planning Meeting, Reston, VA, November 2000.

• Information technology — Portable Operating System Interface (POSIX) — Part 1: Sys-
tem Application Program Interface (API) [C Language]. ISO/IEC 9945-1:1996 (IEEE Std
1003.1-1996).

• Information technology — Portable Operating System Interface (POSIX) — Part 1: Base
Definitions. International Standard ISO/IEC 9945-1:2002 (IEEE Std 1003.1-2001).
http://www.unix-systems.org/online.html

• Enhanced View of Time Specification. Version 1.1, Object Management Group, May 2002.

• Markus Kuhn: Proposed new <time.h> for ISO C 200X. 1998–2002.
http://www.cl.cam.ac.uk/~mgk25/c-time/

• Markus Kuhn: Proposal for a Smoothed Coordinated Universal Time (UTS). 2000-10-23.
http://www.cl.cam.ac.uk/~mgk25/uts.txt

25

