UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA OBSERVATORIES/LICK OBSERVATORY
TECHNICAL REPORT
No. 55

TRAFFIC CONTROLLER

Part 1 - User's GQuide
Part 2 - Runner's Guide

Santa Cruz, California

April 1990

TRAFFIC CONTROLLER
User’s Guide

by

R. J. Stover

Part 1
UCO/Lick Technical Report 55

April 6, 1990

Part 1
Traffic Controller User’s Guide

Part 2

Runner User’s Guide

by
R. J. Stover

UCO/Lick Technical Report 55

Table of Contents

Page

I. Introduction, 1
II. Communicating With Treffic 2
A. Setting Up the Traffic Socket 2

B. Getting Message Numbers 4

C. Broadcast Messages 5

D. Terminating the Socket Connection 6

E. Unrecognized Messages 7

III. C Roubtinesovvuvriinnvineneeernnnn. 8
A. Routine startproccvinnn. 8

B. Routine connectproc 9

C. Other Routines 10

1. Routine read_remote 10

2. Routine waitfor 10

3. Routine fiogerrer 10

IV. Sending Messages Through Traffic 11
A. Broadcast Messages 11

B. Regular Messages 11

V. Things ToDocovviviiiiiiiiinn. .. 12

TRAFFIC CONTROLLER
User’s Guide

I. Introduction

Traffic is a simple program developed for the Lick and Keck optical instrument
data acquisition systems. Traffic is the central inter-process communications hub of
the MUSIC system, as described in the MUSIC System Coordination Overview
(Part I of UCO/Lick Technical Report 54). Traffic provides a centralized process
to coordinate the routing and distribution of messages between the various MUSIC
data acquisition processes. Typically each data acquisition process opens up a single
channel of communication (a Unix socket) to traffic and this single channel is used for
all communications with other processes.

In addition to simple message routing, traffic provides message broadcasting
in which a single message is replicated and sent to a number of clients. This is an
important function in the MUSIC system in which multiple user interfaces may all
wish to receive the same update information.

Messages are sent between processes in the standard MUSIC message format.
The descriptions given in this document assume the reader is familiar with this format
and the typical means for sending and receiving such messages. See the MUSIC
System Messages document (Part II of UCO/Lick Technical Report 54) for a complete
description, To review briefly, the simplest message can be sent with the following two
function calls.

mstart(to,from,msgnumber);
nsend{socket);

The first function, mstart, builds a simple message and the second function,
msend, transmits the message. The to, and from parameters are message addresses,
msgnumber is a message number, and socket is the socket to iraffic.

The remainder of this document describes the use of {raffic. Processes which
use traffic will be referred to as clients. Section IT describes communications with
traffic itself. Section III briefly describes some C routines developed for handling the
communications with treffic. Section IV describes some details of sending messages
through traffic to other processes.

II. Communicating with Traffic

A. Setting Up the Treffic Socket

When traffic starts up it uses the C routine read._remote to look in a configuration file
(dtakeservice on the Lick system) for the name ‘trafficport’ from which it obtains the
TCP/IP Internet port number. The value of ‘trafficport’ must be consistent among the
dtakeservice files for all of the machines in the MUSIC system. Traffic then creates a
Unix TCP/IP socket and listens for connections at the specified port number. Traffic
clients can use read_remote to obtain the port number, can create a Unix socket, and
can connect to the traffic port. The routine startproc, described in Section III-A,
performs these functions for ¢raffic clients. The routine read_remote was discussed in
the MUSIC System Coordination Overview, Part 1 of UCO/Lick Technical Report
54. It is also listed in Section ITI-C of this document.

Clients can send messages through fraffic to other clients, or they can send
messages directly to traffic. Most clients will do both. Routines which communicate
with treffic will need to include the C header file traffic.h which symbolically defines
all of the message numbers for the messages sent by clients to traffic or sent by traffic
to clients. Table 1 lists all of the traffic messages involving direct commnunications with

traffic.

Table 1
Symbolic Names for Treffic Messages

Client Sends Traflic Responds
SOCK_CONNECT R_SOCK.CONNECT
CONNECT_PROC R._.CONNECT_PROC
DESIRED_MSGS R_DESIRED_MSGS
TURN_OFF_MSGS R.TURN_OFF_MSGS
GOODBYE none

anything else INEXPLICABLE

The file traffic.k also defines the symbol TRAFFIC_CONTROLLER which is the
message address to use when sending messages to the traffic controller. This goes in
the to parameter of the mstart function call. The body of all {raffic messages is briefly
described in traffic.h, and we will repeat those descriptions here. Elements of the body
are either 32-bit integers or character arrays. In these descriptions, an integer called
X is declared as int X and a character array called C is declared as char C[]. The
elements are placed in the body of the message in the order they are listed in the
description. We begin with the description of SOCK_CONNECT.

msg number = SOCK_CONNECT (client sends this to traffic to identify
itself)
nsg body = char name[] = Client’s process name

Once a client has established the socket connection to the traffic controller,
the client needs to identify itself to fraffic using the SOCK_CONNECT message. This
message provides to fraffic a name which traffic saves in an internal table along with
the client’s message address which is assigned by traffic. Later, other clients can ask
traffic for the message address corresponding to that name. The name should be a
unique string. On the Lick system this name is usually constructed from the name of
the program, the computer host name, and the Unix process ID number. For processes
started by requests to runner, runner generates this unique name and supplies it both
to the process being run and to the requesting process. Other processes, such as user
interfaces which are not started by runner, need to build this unique name themselves.
See the Runner User’s Guide, Part 2 of this Technical Report, for details on runner.

Traffic responds to SOCK_CONNECT by returning the R_SOCK_CONNECT message.

msg number = R_SOUCK_CONNECT (traffic sends this in response to SOCK_CONNECT)

msg body = int msgaddr # The clients message address if positive
or -1 if some error occurs.

The returned message address should be used in all further messages. This
is the number to put in the from parameter of the mstart function call. If a -1 is
returned by traffic then some problem was encountered by traffic and an explicit error
message will be logged by traffic into the error file. (In the Lick system the error file
is /u/ccd/trafficlog. In the Keck system the error file name is TBD.)

B. Getting Message Numbers

Once a client has successfully completed the SOCK_CONNECT transaction it has its
own message address. To send messages to another client it must obtain the message
address of that client. It can do this by sending a CONNECT_PROC message to traffic.

msg number = CONNECT_PROC (client sends this to traffic to request
another process’s message address)
nsg body = char name[] = Name of the process for which the
message address is being requested

The body of the message must contain the (null terminated) process name
of the process for which the message address is requested. Obviously, to use CON-
NECT.PROC a client must know the process names of other clients. Exactly how the
names become known to other processes is up to the programmer, but one way is de-
scribed in the document MUSIC System Coordination Overview (Part I of UCO/Lick
Technical Report 54) and uses the runner process. The runner process is described
in the Runner User’s Guide, Part 2 of this Technical Report. Another less general
method is available for obtaining message addresses which does not require the knowl-
edge of a process’s name but instead depends on the traffic broadcast mechanism.
See Section IV-D of the Infoman User’s Guide (UCO/Lick Technical Report 56) for a

detailed example.

When freffic receives the CONNECT.PROC message it searches its table of names
supplied by previous SOCK_CONNECT messages and, if it finds a match, it returns the
corresponding message address in an R_CONNECT_PROC message.

msg number = R_CONNECT_PROC (traffic sends this in response to CONNECT_PROC)

msg body = char name[] = Process name given in CONNECT_PROC
int msgaddr = The requested message address or -1
if an error occurs.

If the returned message address is -1 then traffic failed to find a matching
name, and a message will have been logged in the traffic error log file. The C routine
connectproc, described in Section III-B, has been developed to handle all of the
message 1/O needed to complete a series of CONNECT_PROC transactions for a list of
process names.

C. Broadcast Messages

When treffic receives a message it examines the destination address in the header of
the message and uses this address to look up the Unix socket onto which it is to forward
the message. However, when the destination address is -1 (also symbolically defined as
BROADCAST in traffic.h) traffic treats the message as a broadcast type message. It then
uses the message number to look up a table of Unix socket numbers, and it writes a
copy of the message to each of those sockets. Using this mechanism a client can have
a single message broadcast to a group of clients, and the sending client does not even
have to know which clients receive the message. Clients can put themselves on the
lists to receive particular broadcast messages by sending the DESIRED_MSGS message
to traffic.

msg number = DESIRED_MSGS (client sends thiz to traffic to request
certain broadcast massages)

First message number

Next message number

msg body = int msgnumi
int msgnum?2

Any negative value (-1 is nice) to
mark the end of the list.

int end

The body of the message is a list of message numbers for which the client
would like to receive any messages sent in broadcast mode. For each message number
in the list, traffic creates an entry in that message number’s broadcast table to hold
the client’s socket number. To make the broadcast mechanism as fast as possible
traffic defines another fixed size pointer-table which is indexed by message number
and whose elements point to the associated tables of broadcast socket numbers. Since
this pointer-table is of fixed size, message numbers used in broadcast mode can be no
larger than the size of this table and must be between 0 an 899.

After processing the list of DESIRED_MSGS message numbers, traffic will return
an R_DESIRED_MSGS message.

mag number = R_DESIRED_MSGS {(traffic sends this in response to DESIRED_MSGS)

msg body = int retcode = 0 means JK; -1 means some error.

The retcode element will be 0 unless one of the requested message numbers
is outside the legal range. Check the traffic error log file for a specific error message.

Having sent a DESIRED_MSGS message, a client may later wish to remove itself
from the distribution lists of some or all broadcast message numbers. To do so it can
send the TURN_OFF_MSGS message.

msg number = TURN_OFF_MSGS (client sends this to traffic to cancel
certain broadcast messages)

First message number

Next message number

msg body = int msgnumi
int msgnum?2

]

int end Any negative value {-1 is nice) to
mark the end of the list.

Like the DESIRED_MSGS message, the body contains a list of message num-
bers for which broadcast type messages are no longer desired. The list of message
numbers does not have to match exactly the list of a previous DESIRED_MSGS mes-
sage, but it should include only message numbers for which broadcast messages have
been requested. In respomse to the TURN_OFF.MSGS message, traffic will return the
R_TURN_OFF _M3GS message.

nsg number = R_TURN_OFF_MSGS (traffic sends this in respomnse to
TURN_OFF_MSGS)

msg body = int retcode = 0 means OK; -1 means some error.

The element retcode will be -1, indicating an error, if any of the TURN_OFF _~
MSGS message numbers are outside the legal range for broadcast messages (0 to 899).

D. Terminating the Socket Connection

When a client has finished its work it can send a final message, GOODBYE, to traffic.
When traffic receives this message it removes the client from the process name table
and it removes the client’s socket number from all broadcast tables. It then closes the
client socket; no response message is sent.

msg number = GOODEYE (client sends this to traffic to terminate connection)
msg body = no body

If a client process terminates without sending the GOODBYE message, traffic will
immediately detect the closed socket and it will perform the same clean-up operations
as if it had received the GOODBYE message.

E. Unrecognized Messages

If traffic receives any message it does not recognize (i.e. not in Table 1) then traffic
will return the INEXPLICABLE message.

msg number = INEXPLICABLE (traffic sends this in response to an
unrecognized message)
msg body = struct msg_head head = Header of unrecognized message

The body of the message contains the header of the unrecognized message.

I11. C Routines

The routines described here have been developed for the Lick MUSIC system.
These routines, or modifications of them, may be applicable to the Keck system as
well. These routines are available from UCO/Lick on an as-is basis.

A. Routine startproc

A client calls startproc to make the network connection to traffic. In fact, if a
connection to treffic on the local host is being made, startproc will start the traffic
process if it is not already running. In the Lick system we run the reffic process like
a standard Unix daemon, so it is always up and running and the automatic startup
feature of startproc is not used. The following shows the function calling sequence
and briefly describes the parameters to the call.

startproc(procname,hostname, sock,msgaddr)

input char #*procname = Our process name

input char *hostname = Host on which traffic process should be found
output int *sock Socket to traffic process

output int *msgaddr Our message address

function return 0 if successfull and <0 otherwise

10

The startproc function performs the operations discussed in section II-A.
It sets up the TCP/IP socket to treffic on the host given by the function parameter
hostname, it sends the SOCK_CONNECT message using procname as the process name,
and it waits for the R_SOCK_CONNECT reply. If any of these steps fail the function
value will be a negative value and a specific error message will be logged with a call
to the function flogerror. If all steps succeed the socket to traffic is stored at the
address given by sock and the client’s message address is stored at the address given
by msgaddr.,

B. Routine connectproc

A traffic client makes a call to connectproc to obtain the message address of other
traffic clients. The following shows the function calling sequence and briefly describes
the parameters to the call.

connectproc{sock,msgaddr, pnum, proclist,adlist,waitfunc)

Socket to traffic process

input int msgaddr Cur message address

input int pnum Number of strings in proclist
input char *proclist[] = List of process names

output int adlist[] = List of mesaage address/status
input int (*waitfunc)()= Address of routine to call with
extraneous messages

input int sock

n 4 un

As described in Section II-B of this document, for each of the processes listed
in proclist this function sends a CONNECT_PROC message to traffic and waits for an
R_CONNECT_PROC message. The message address returned in each R_.CONNECT_PROC mes-
sage is stored in the corresponding element of the array adlist.

Since there is a single connection to treffic through which all messages pass,
it is possible that treffic may relay additional messages from other clients while con-
nectproc is waiting for an R_CONNECT_PROC message. If such an extraneous (to con-
nectproc) message arrives the function waitfunc is called with the message number
as the single integer function parameter. This function is expected to deal in some way
with the extraneous message. Perhaps the simplest function to use here is add_msgque
which was described in the MUSIC System Message document, Part 2 of UCO fLick
Technical Report 54. add msgque simply saves the message on a queue, from which it
can be retrieved and dealt with later.

C. Other Routines

We list here, without much detail, a few additional C routines which are used
internally by #raffic or the routines described above.

1. Routine read _remote
The routine read.remote is called by traffic, its clients, and most other pro-
cesses in the MUSIC system to read basic network configuration data from a config-

uration file. The routine read_remote was discussed in the MUSIC System Coordi-
nation Overview, Part 1 of UCO/Lick Technical Report 54.

2. Routine waitfor

The routine waitfor is used in connectproc and in many other MUSIC
system routines. It permits a process to wait for a particular message from another
process while still handling messages which may arrive in advance. In addition, a
timeout period can be specified so that the wait for a particular message can be
terminated if the expected message does not arrive.

3. Routine flogerror

The routine flogerror is just like the C printf function in that it takes a
variable number of parameters, the first of which is a format string, A message is
constructed using the format string and the resulting message is written to an error
log file. the default name of the log file is /u/ced/errorlog, but this can be changed
by the client process. This is the standard error logging routine for the Lick MUSIC
system. For the Keck system it may be desirable to enhance flogerror to have it
transmit the errror message to some central network error logging process.

10

IV. Sending Messages Through Traffic

A. Broadcast Messages

Messages which have a destination message address not equal to TRAFFIC_CONTROLLER

are messages which are to be relayed by treffic from one client to another, If the des-
tination address is equal to BROADCAST then the message number is used to determine
the client sockets onto which the message is to be copied. If traffic determines that
no clients wish to receive the broadcast message, then it will return a message to the
original sender.

msg number = NO_INTEREST (traffic sends this in response to a
broadcast message no one wants)
msg body = struct msg_head head = Header of unwanted message

The body of the NO_INTEREST message contains the header of the original
broadcast message. Any process which transmits broadcast messages should be pre-
pared to receive this message since the reception of broadcast type messages is under
the control of the receivers of the message, not the sender. What is done with the
NO_INTEREST message once it is received is up to the client process. It could be ig-
nored or it could be used as the trigger to stop further broadcast messages of the type
returned.

B. Regular Messages

If the destination address is neither TRAFFIC_CONTROLLER nor BROADCAST then the
message is a simple message directed from one client to another. In this case the
destination address specifies the socket onto which the message is to be relayed. Traffic
checks to make sure the destination address references a valid socket. If it does not
then traffic can not relay the message and instead it returns an error message to the
original sender.

msg number = NO_DELIVERY (traffic sends this if a message can’t be
forwarded)
msg body = struct msg_head head = Header of original message

All clients should be prepared to receive the NO.DELIVERY message. This
message can occur for two reasons. The first is simple programming error resulting
in the use of an incorrect address. The second reason is that the intended receiving
client has closed its socket to traffic.

11

V. Things To Do

Except for the NO_DELIVERY message described in the previous section, there
is no way for one client to learn that another client has closed its socket to traffic. This
means that the sender of a message has no way to know of the intended recepient’s
termination until after the message is sent. There needs to be an additional message
which a client can send to traffic which tells traffic to send a termination message as
soon as a particular client terminates either by closing its socket or by sending the
GOODBYE message.

It might be nice if more explicit error codes were returned by traffic.

12

RUNNER
User’s Guide

by

R. J. Stover

Part 2
Lick Technical Report 55

April 6, 1990

Table of Contents

Page

I. Introductioncooiiiiia 1
II. Communicating with Runner 3
A. Setting Up the Runner Socket 3

B. Starting a Process 4

ITI. How Processes Are Run 6
IV. The runproc Routine 7
V. Things ToDooiviiiiiiiiiin 8

RUNNER
User’s Guide

1. Introduction

Runner is one of the system coordination processes developed for the Lick
and Keck optical instrument data acquisition systems. The runner process performs
two primary functions, process start-up and process shutdown. It also provides an
important secondary function by generating unique process names which are used
later to make connections through the traffic controller (see Section II of the Traffic
Controller User’s Guide, Part 1 of this Technical Report).

When an observer starts up a user interface it establishes a TCP/IP connec-
tion to the runner process on whatever machines it wishes to start processes. It then
sends requests to the runner process{es) to start up the other parts of the MUSIC
system as are appropriate. For each request to start a process, the user interface will
receive a response indicating whether or not runner could successfully start the re-
quested process. In the case of a success response runner also sends a unique name
to be used in making connections through the treffic controller, and it adds the new
process to its internal list of currently running processes. The unique name is also
passed as one of the program arguments to the process being started so it can identify
itself to the treffic controller with the appropriate name.

If there were only one user interface the actions performed by runner could
more simply be carried out directly by the user interface. The real advantages of
the runner process are realized when multiple user interfaces are in use. When the
second and subsequent user interfaces are started up they too make a connection to
the runner process and they make the same requests as did the first user interface. But
this time runner finds the requested processes in its list of currently running processes.
So instead of starting up another copy it just returns a success message to the user
interface for each requested process, and it records that another user interface has
requested that process. As a result any number of user interfaces can be started in
any order and as far as the user interfaces are concerned, they have all started up the
MUSIC system in the same way.

As an observer closes down their own user interface the runner process detects
the lost TCP/IP connection which the interface had originally established. In response
to this lost connection runner will delete the record of that user interface from the list
maintained for each requested process. When the last user interface is deleted from
the list for a particular process, runner will send that process a Unix SIGTERM signal

to terminate the process. Because of the way runner starts and stops processes, the
entire MUSIC system is brought up when the first user interface is run and it remains
up until the last user interface terminates.

The remainder of this document describes the use of runner. Section II de-

scribes communication with runner. Section III describes how runner starts new pro-
cesses, Section IV describes a C routine for running processes via runner.

IT. Communicating with Runner

A. Setting Up the Runner Socket

Runner is typically started as a Unix dacmon, and is therefore always up and running,
waiting for new TCP/IP network connections. When runner starts up it uses the C
routine read_remote to consult the dtakeservice file for the name ‘runnerport’ from
which it obtains its TCP /1P port number. The value of ‘runnerport’ must be consistent
between all of the dtakeservice files on all of the machines in the MUSIC system. (See
the MUSIC System Coordination Overview document, Part 1 of UCO/Lick Technical
Report 54, for a further description of read_remote and the file dtakeservice.) Runner
then creates a Unix TCP/IP socket and listens for new connections at the specified port
number. Runner clients can use read_remote to obtain the port number, can create a
Unix socket, and can connect to the runner port. These functions are performed for
the client using the runproc routine described in Section IV.

Runner uses the standard MUSIC message format to both send and receive
messages from client processes. This document assumes the reader is familiar with
this format and the various routines available for sending and receiving such messages.
Read the MUSIC System Message document, Part 2 of UCO/Lick Technical Report
54, for a complete description. Since messages to or from runner do not go through
the traffic controller the message address portion of the message header is unused in
this application.

In the Lick system, runner uses the C routine flogerror to log errors and
other activity in the log file /u/ccd/runneriog.

B. Starting a Process

Once the socket to runner is established the client can send runner requests to
start up processes. To start a process it sends the START_PROC message. This message
number is symbolically defined in the C header file runner.h. The body of all runner
messages is briefly described in runner.h, and we will repeat those descriptions here.
Elements of the message body are either 32-bit integers or character arrays. In these
descriptions, an integer called X is declared as int X and a character array called C
is declared as char C[]. The elements are placed in the body of the message in the
order they are listed in the description.

msg number = START_PROC (a client sends this to runner)

msg body = char progname[] = The name of a program for rumnner
to executes.

The body of the message contains the null-terminated name of the program
to run. If this name begins with the virgule (/) then runner assumes the name is
an actual pathname of the executable file containing the program. If the name does
not begin with the virgule then runner assumes the name is a logical name for the
desired program and it uses the logical name to look up the full pathname in the
dtakeservice file. If the resulting file name appears to be executable and runner is not
already executing the program then runner performs a Unix fork and the forked copy
performs a Unix execl to run the requested program. If it is already running, runner
simply returns a stccess status with the unique process name for the already-executing
process.

For every START_PROC message received, runner sends back an R.START -
PROC message which provides a completion status code and text message.

msg number = R_START_PROC {runner sends this in response to START_PROC)

4 code number to indicate the result
of the START_PROC command.
The length of the following message.
A text message describing the result
of the START_PROC command.

mag body = int replycoede

int textlen
char textmsgl[]

i

The element replycode is one of the codes defined in runner.h and listed
in Table 1. The textmsg portion of the body is similar to the text given under
the ‘Meaning’ column of Table 1 in all of the failure cases. If the replycode is
START_PROC.SUCCESS then the textmsg element contains the unique process name
of the executed process. The client should use this name as the process name in the

CONNECT_PROC message to traffic. (See the Traffic Controller User’s Guide, Part 1 of
this Technical Report).

Table 1
Symbolic Names for Runner Status Codes
Symbolic name Meaning
START_PROC_SUCCESS Success (Requested process execl’ed)
START_PROC_FAIL1 Logical translation failed
START_PROC_FAIL2 Can’t determine if file is executable
START_PROC.FAIL3 File is not executable

The ...FAIL1 status is returned if runner tries to look up the program path
name in the dtakeservice file but does not find it. Runner uses the Unix stat function
to determine whether or not the requested program is executable, If the stat function
fails (usually because the requested program does not exist) then runner returns the
.« .FAIL2 status. If the stat function succeeds but the data returned by stat indicates
that the file is not executable then runner returns the . ..FAIL3 status.

IT1. How Processes are Run

The processes started by runner execute on the runner host machine. How-
ever, the client and runner processes do not have to be executing on the same computer,
It is therefore possible for a single client to start up processes on several different com-
puters. There simply has to be runner processes on the appropriate machines. This
18, in fact, the situation in the Lick MUSIC system in which there is an observer’s
computer and a CCD controller computer.

When runner executes a program it passes two arguments on the processes
argv[] list. The first is the last component of the path name of the program’s ex-
ecutable file. This is standard Unix practice. The second argument is the same
unique process name returned to the requesting client in the R_.START PROC mes-
sage. The executed process should use this name as its process name when it sends
the SOCK_CONNECT message to traffic.

Before runner calls the execl function to run the new program it closes all
open Unix file descriptors.

IV. The runproc Routine

The C routine runproc has been developed for the Lick MUSIC system.
It is used to request a runner to run a specified process for the client. A table of
already-connected runner daemons is maintained by runproc so that a single network
connection is made to any one runner.

int runproc(section,host,process,tname,tnamesize)

Dtakeservice file section name

Name of host to run the process on
Name of process to run

Array containing unique process name
(or error message if return < 0)
Size of the tname array

input char *section
input char *host
input char *process
output char tname[]

input int tnamesize

The return function value will be one of the values given in Table 2. If the
function return value is positive then the function call was successful and the tname
character array contains the unique process name of the newly run process. If runproc
makes a new socket connection to runner then the positive return value will be the
Unix descriptor for that socket. If runproc already finds it has a socket connection
open to the necessary runner the positive return value will have 1000 added to the
socket number.

Table 2
Function Return Values For runproc

Value Meaning
Positive value: Encoded such that:

<1000 Socket number to a ‘new’ runner

>=1000 Socket number + 1000 to an ‘old’ runner
-1 Could not allocate memory for internal tables
-2 Could not make network connection with runner
-3 Too many hosts connected (50 max)
-4 Got no response from runner
-5 Error writing on runner socket
-6 Runner could not run the requested process

If the function return value is negative then the global character array run-
proc_err will contain a descriptive text message. And in the case of error -6 the
message input buffer will contain the runner R_START_PROC message which can provide
additional details on the error.

Given the standard configuration of the dtakeservice file the section param-
eter would normally be “network”. As an example, assume that we wish to run a

program called dtake on a host called sunl. Then our call to runproc might look like:

ret = runproc(“network","sunl",'dtake",tname,sizeof (tname));

runproc uses the “network” parameter and the name “runnerport” to look
up the TCP/IP port number for runner. Using this number it establishes a connection
to runner on host “sunl” and sends a START.PROC message with the name “dtake”,
Since “dtake” is not a full path name runner will look this name up in its local copy
of the file dtakeservice to find the path name on sunl. The requested program is then
run and the unique process name will be returned in the character array tname.

V. Things To Do

There needs to be a way for a client to tell runner that it would like to
be notified whenever one of its requested processes terminates. The client would
send runner an additional message requesting this service. Whenever runner de-
tects that one of its executed processes has terminated it would then send a message
to each client which both requested that process and requested the termination no-
tice. Currently, clients keep their TCP/IP connection to runner open after the initial
START_PROC/R_START.PROC transactions, but do not expect any further messages to ar-
rive. When the termination notice feature is provided clients will need to be prepared
to look for, and accept, additional messages from runner.

