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Introduction

What is a Type | X-ray Burst?

Properties

@ Low Mass X-ray Binaries
@ Accretion of H and/or He

@ Ignition at base of acceted

layer
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Introduction

What is a Type | X-ray Burst?: Lightcurve
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@ Buring mode sets 7q,,.

@ Inferred ignition
column implies
deflagration —
subsonic flow

after

Strohmayer, T., et al., ApJL, 469, L9,
(1996)
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Introduction

What is a Type | X-ray Burst?: Oscillations
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Strohmayer, T. and Markwardt, C., ApJ, 516, L81, (1999)

Chris Malone SUNY Stony Brook

mensional Simulations of Convection Preceding a Type | X-ray Burst on the Surface of a Neutron Star



Introduction

Why do we care?

@ Unique location
for rp-process
burning

o Flame propagation
under extreme

conditions

@ Possible distance
. 8 10 12 14 16
indicators (7) Radius (km)

@ Constrain EOS for

Lattimer, J.M., ApSS, 308, 371 (2007)
dense matter
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@ Past numerical studies
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1-d Models of Type | X-ray Bursts

Pros ; . .

@ Reproduce E, Tyise, Tdur., Trecur.
e Can use large reaction networks  =f E

e Computationally cheap

gL /ergs™")

Cons

@ Assume spherical symmetry

LNV

o Parameterized convection ) . .
(MLT) ’ ALY ’

° CannOt StUdy Iateral ﬂame Woosley et al., ApJS, 151, 75 (2004)
propagation
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Past numerical studies

2-d Models of Type | X-ray Bursts

hot
burning front e Very few!!
/ @ Mostly treated as
p=const wld detonations—inconsistent
with most observations
@ Spitkovsky et al. used
N 2—layer, shallow water,
incompressible, ideal gas to
Spitkovsky et al., ApJ, 566, 1018 (2002) ShOW importance Of rotation
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Past numerical studies

Modeling Type | X-ray Bursts

The problem domain is divided into zones, and discretized versions
of the various conservation laws tell us how to evolve each zone
over a small timestep.

Difficulty:

@ Necessary condition for convergence of explicit hydrodynamics
algorithm
(CFL condition):
Information can not propagate more than one grid zone in a
single timestep.
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Past numerical studies

Modeling Type | X-ray Bursts

Information can not propagate more than one grid zone in a single
timestep.

Compressible hydrodynamics (e.g. Euler equations)
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Past numerical studies

Modeling Type | X-ray Bursts

Information can not propagate more than one grid zone in a single
timestep.

Compressible hydrodynamics (e.g. Euler equations)

@ Allows for sound waves
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Past numerical studies

Modeling Type | X-ray Bursts

Information can not propagate more than one grid zone in a single
timestep.

Compressible hydrodynamics (e.g. Euler equations)

@ Allows for sound waves

@ Information propagates at U + ¢s: At S Uﬁxcs
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Past numerical studies

Modeling Type | X-ray Bursts

Information can not propagate more than one grid zone in a single
timestep.

Compressible hydrodynamics (e.g. Euler equations)

@ Allows for sound waves

e Information propagates at U + cs: At < U%rxc
@ Supersonic (detonations; M = C% > 1): At < AX
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Past numerical studies

Modeling Type | X-ray Bursts

Information can not propagate more than one grid zone in a single
timestep.

Compressible hydrodynamics (e.g. Euler equations)

@ Allows for sound waves

o Information propagates at U + cs: At < UA-i-XCs
@ Supersonic (detonations; M = C% > 1): At < %

@ Subsonic (deflagrations; M <« 1):
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ntroduction Past numerical studies Computational Method of our Code

2-d Models of Type | X-ray Bursts
Low Mach Number Approximation Methods

o Filter acoustics—timestep size determined by dynamics:
Ax
AtS T
e Factor of 1/M increase in timestep size

o Common example: incompressible fluid — V- U =0

@ Can assume background/base state in HSE and consider
motions about this state

g Lin et al. low Mach number method

@ Important first step

@ 15 order accurate in space and time

0 500 1000 1500

v @ Didn’'t model top of atmosphere
Lin et al., ApJ, 653, 545 (2006)

@ Time-independent base state
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Computational Method of our Code, MAESTRO

e Computational Method of our Code, MAESTRO
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Computational Method of our Code, MAESTRO

MAESTRO

as described in Nonaka et al., ApJSS, 188, 358 (2010)

@ Second order accurate in space and time

o Time-dependent base state

@ Uses Adaptive Mesh Refinement

@ Filters acoustics while retaining important compressible effects,
such as stratification, thermal diffusion and composition
change
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Computational Method of our Code, MAESTRO

Filtering Acoustics
MAESTRO low Mach number equation set

@ Decompose pressure field: p(x,r,t) = po(r,t) + m(x,r,t)
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Computational Method of our Code, MAESTRO

Filtering Acoustics
MAESTRO low Mach number equation set

@ Decompose pressure field: p(x,r,t) = po(r,t) + m(x,r,t)
@ Base state density: Vpg = —gpoe,
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Computational Method of our Code, MAESTRO

Filtering Acoustics
MAESTRO low Mach number equation set

@ Decompose pressure field: p(x,r,t) = po(r,t) + m(x,r,t)
@ Base state density: Vpg = —gpoe,
|

@ Asymptotic expansion of hydro eqns in M: o = O(M?)

0
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Computational Method of our Code, MAESTRO

Filtering Acoustics
MAESTRO low Mach number equation set

@ Decompose pressure field: p(x,r,t) = po(r,t) + m(x,r,t)
o Base state density: Vpy = —gpoe,
@ Asymptotic expansion of hydro eqns in M: % = O(M?)

X
a(gtk) = —V-(pXcU) + pi
U y.vu-tun_ L
ot P
9(ph) Dpo
ot = —V(phU)+ Dt +pHnuc+V'(I€VT)
1 0
V'(ﬁou) = Bo (S_rlm;:)
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Computational Method of our Code, MAESTRO

e . Mach Number
Fllterlng ACOUStICS astro.sunysb.l;ldu/mzingale/Maestro
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@ Our Results
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Our Results

Initial 1-d Model Generation
Discussed in Malone et al., (2010) submitted to ApJ

@ Construct simple atmosphere in HSE and thermal equilibrium;

(similar to Cumming & Bildsten, ApJ, 544, 453 (2000))

av_ 3k
dy  4acT3
dF

= =0

y
where dy = —pdr with y as column depth

@ Include constant heat flux from deep crustal heating:
F =200 keV / nucleon

@ Base should be thermally unstable: dg’%‘c > dzc;"'
. . . 4
o Typically €co0l is approximated as ecqo ~ %
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Our Results

Initial 1-d Model Generation

When mapping to multi-d:

System can cool from
convective overturn

Approximation to cooling

needs to be augmented
for the system to be
unstable

€cool = % =+ €conv.
Effective convective
cooling provided MLT in
the Kepler code (thanks
to Stan Woosley)

10°
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Our Results

Onwards toward Multi-d. . .

@ 1-d model is laterally mapped across multi-d domain
@ No multi-d velocity information from Kepler

o Symmetry broken by small (AT/T ~ 107°)
perturbation—this seeds convection

This Study

o We assumed pure *He accretion (similar to 4U 1820-30)
ontop of a pure ®Fe neutron star substrate.

@ We only included forward and reverse 3« burning rates from
Caughlan & Fowler (1988).
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Our Results

4‘01817
Resolution Studies 35
~ 3.0
. S 2s
Resolution issues "> |[— 5em .
g 20 —Ib5cm 07
- —_— cm
@ Sharp jump in T creates i
40 = 10 [
very peaked Hpyc(~ T°°) 0"s60 370 380 390 200
. . . 0'5
@ Requires high resolution ool ‘
(~ 0.5 cm / zone) to resolve 49 ‘ ‘
thin burning layer 33
. . -~ 30
e Comparison: Lin et al. used " 28l oz ]
— .oCm E
5 cm / zone 5 20| — 1cm 1o
note their model used a pure = i5|| Z3m
12C substrate and had a 210 W
much smoother thermal 05
profile 0.05 200 400 500 80 1000
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Our Results

Resolution Studies: Under-resolving=BAD!
a) b) C)
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a) 0.5 cm zone ™ 1; b) 2 cm zone " !; ¢) 4 cm zone™!; d) 7.5 cm zone™
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Our Results

Expansion of Atmosphere

With MAESTRO we can
model the surface of the
star without numerical
complications.

Furthermore, we use a
time-dependent base state,
which allows us to capture
the expansion of the
atmosphere from heating.

Chris Malone
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Our Results

Convective Dynamics: X(12 ) and Velocity Vectors

t =0.0 ms t=0.4 ms t 8 ms
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Our Results

Convective Dynamics: X(12C) and Velocity Vectors

t =5.0 ms t 5 ms t =10.0 ms
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Our Results

Convective Dynamics: X(*2C) and Velocity Vectors

t=18.5 ms t =20.5 ms t =23.0 ms
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Introduction Past numerical studies = Computational Method of our Code, MAESTRO  Our Results  Wrap-up

Convective Dynamics: X(12C) and Velocity Vectors

t =25.0 ms t =26.0 ms t =28.0 ms

i

N
TR
N %
L

Chris Malone SUNY Stony Brook

mensional Simulations of Convection Preceding a Type | X-ray Burst on the Surface of a Neutron Star



Our Results

Convective Dynamics: Extent of Convective Region
Adiabatic Excess

Ag_V(nT)-e <d|nT>

V(lnp)-e, dinp
t=7.9 ms

1000

0.2
800

o Upper boundary
oof T expands upward by

500 ? 32.5 cm; lower

400 boundary expands

0.1

} downward by 9.5

200,

2 cm

350 400 450 500 550 600 650 700 0 5 10 15 20 25 30

t(ms)
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Our Results

Convective Dynamics: Iron Dredge-up
o Eddies interact with lower convective boundary

@ Shearing occurs

@ Dredge-up of underlying neutron star material

1
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Our Results

Convective Dynamics: Iron Dredge-up
o Eddies interact with lower convective boundary

@ Shearing occurs

@ Dredge-up of underlying neutron star material
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Our Results

Energy Generation
1.0}

S 0.8}
o Still linear—no

flame ignition

("]
yet >
- 2
o Interesting g
short-lived i
spikes when w 04 00 05 L0
turbulence
brings fresh
0.2
fuel to hotter
layers
0.9 5 10 15 20 25 30
time (s)
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Wrap-up

O Wrap-up
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Wrap-up

Wrap-up
Conclusions

o For a system that is close to runaway in mult-d, €. needs to
include convective terms.

@ Our models suggest an order of magnitude more resolution
than what has been used previously.

@ The strong convection interacts with and churns up the
underlying neutron star material.

Future Work
@ Investigate different initial models—maybe relax resolution
requirement

@ Investigate mixed H/He bursts—maybe relax resolution
requirement

o Compare 3-d runs with 2-d runs—does dredge-up still occur?
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