
Cosmology Notes: 10/12/06

*** Start reading Chapter 3 of Dodelson. ***

Let’s take a look at the proper distance versus redshift at the current
epoch. Recall that along a radial trajectory, i.e. θ = φ = 0, we have

d~l2 = R2(t)
dr2

1− kr2

⇒ dl = R(t)
dr√

1− kr2
. (1)

So we have that the proper distance l is just the integral of (1), from some
initial from l = 0 to the current l:

l =
∫ l

0
dl′ =

∫ r0

0
R(t0)

dr√
1− kr2

= R0

∫ r0

0

dr√
1− kr2

. (2)

But, you will recall from our previous lectures that we called this integral
χ(z), or in other words:

l = R0χ(z) =
c

H0

∫ 1

1/(1+z)

dx

x
√

Ω0
x + 1− Ω0

. (3)

Now we consider what is the relation between cosmic time and redshift
in a matter only universe. We start from the Friedmann equation:

Ṙ2 = R2
0H

2
0

(
Ω0

R0

R
+ 1− Ω0

)

⇒ dt =
dR

R0H0

√
Ω0

R0
R + 1− Ω0

.

Now, t is found by integrating from 0 to t the left hand side, while integrating
from 0 to R(t) on the right hand side. If we let

x =
R

R0
⇒ dx =

dR

R0

then we have

t =
1

H0

∫ 1/(1+z)

0

dx√
Ω0
x + 1− Ω0

, (4)

where we have used the fact that R(t)
R0

= 1
1+z .
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So, lets take an example: the Einstein-deSitter universe, where Ω0 = 1.
Plugging this into (4) we have trivially

t =
1

H0

∫ 1/(1+z)

0

√
xdx =

2
3

1
H0

(
1

1 + z

)3/2

. (5)

Notice that in the limits

lim
z→∞

t = 0, lim
z→0

t =
2
3

1
H0

.

It has been worked out1, for an for arbitrary Friedmann models with
ΩΛ = 0:

Ω0 > 1 : t =
Ω0

2H0(Ω0 − 1)3/2

[
cos−1

(
Ω0z − Ω0 + 2

Ω0(1 + z)

)
− 2

√
(Ω0 − 1)(Ω0z + 1)

Ω0(1 + z)

]

Ω0 < 1 : t =
Ω0

2H0(1− Ω0)3/2

[
2
√

(1− Ω0)(Ω0z + 1)
Ω0(1 + z)

− cosh−1
(

Ω0z − Ω0 + 2
Ω0(1 + z)

)]

Ω0 = 0 : t =
1

H0

1
1 + z

.

Let us now consider the proper distance taking into account the expan-
sion of the universe along the trajectory. In other words, we want the proper
distance versus redshift for any epoch:

ds2 = dt2 − d~l2

c
= 0 ⇒ cdt = −R(t)

dr√
1− kr2

= −dl,

where we have used (1) and introduced a “−” sign such that as t gets earlier
and earlier, l gets longer and longer. So from this we can say that over any
finite distance we have

c∆t = −∆l.

Now we investigate the relation between the proper distance and the
comoving distance. Consider two objects which are separated by some dis-
tance d0 today. We know from our previous discussions about scaling that
this distance at any time t can be written as

d0R0 = dR(t) ⇒ d =
d0R0

R(t)
=

d0

1 + z

1Although, it is probably not useful today, but whatever.
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and therefore
d0 = d(1 + z). (6)

The left hand side of (6) is called the comoving distance and the d in the right
hand side is the proper distance. Similarly, we can consider the comoving
and proper volume:

V0 = V (1 + z)3.

Note that the comoving volume (i.e. the volume which a volume V at
redshift z would occupy today) is always larger than the proper volume: the
universe is expanding.

Let us examine the proper volume in more detail. Imagine you are an
observer looking at the night sky through some solid angle Ω. If we know
your solid angle and the distance to the object, we can get the area, A, of
the sky you are looking at. Now we consider some volume of the sky you
are examining which has (along your line of sight) one side at the distance
which corresponds to the area A, and the far side at this distance plus some
length ∆l. Now, if ∆l is small, then we can say that the areas at either
location are equal; i.e. we are looking at a volume of a rectangular box:

V = A∆l = Ac∆t.

We know that the area covered by some solid angle is related to the angular
diameter distance (similar to how θ is related to that distance):

θ =
Length
dang

; Ω =
Area
d2

ang

⇒ A = Ωd2
ang,

and therefore
V = Ωd2

angc∆t. (7)

We return to our example of the Einstein-deSitter universe whose time
was given by (5). If we differentiate this expression and turn the differentials
into finite differences we have

|∆t| = 1
H0

(1 + z)−5/2∆z.

We now need to recall our expression for the angular diameter distance:

dang =
dlum

(1 + z)2
; dlum =

2c

H0

(
(1 + z)−

√
1 + z

)
.
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Plugging this back into (7) we see that

V =
4c2Ω
H2

0

(
1

1 + z
− 1

(1 + z)3/2

)2

c

[
1

H0

1
(1 + z)5/2

∆z

]
=

4c3Ω∆z

H3
0

(
1

(1 + z)9/2
− 2

(1 + z)5
+

1
(1 + z)11/2

)
(8)

Now we turn our attention to something called surface brightness. When
we look at a star through a telescope, it seems as a pointsource; i.e. we can’t
resolve the image but rather we measure a total energy flux from the source.
When looking at galaxies, we can resolve them because they are distributed
objects. We take the flux we obtain per a pixel, and integrate over all pixels
to get the total brightness, in our direction, of the object. This is called the
surface brightness S. We therefore have

S = energy · (time)−1 · (area)−1 · (solid angle)−1

Sλ = “ ′′ · ( wavelength)−1.

(9)

We can now consider some solid angle dΩ which makes an angle θ with
respect to the normal of some surface area element dA, and we write the
differential amount of energy seen from this source as:

dE = Sλdt dA dΩ cos θ dλ.

Therefore, we can write the total surface flux from the source as

F =
∫

SdΩ.

In Euclidean geometry, we know that dΩ = dA
r2 and also that the flux is

proportial to r−2, therefore the surface brightness is independent of distance.
If we write S = F

Ω and recall the definitions of F and Ω:

F =
L

4πd2
lum

; Ω =
A

d2
ang

=
A

d2
lum(1 + z)−4

we can see that the surface brightness is

S =
L

4πA(1 + z)4
= S0(1 + z)−4.

Similarly, if we express the flux as per unit wavelength/frequency, we have

Sλ = Sλ,0(1 + z)−5

Sν = Sν,0(1 + z)−3.

(10)
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