Toward End-to-End Simulation of SNe la

Chris Malone

Department of Astronomy and Astrophysics UCSC April 16th, 2013

Acknowledgments

Wetware

- · UCSC
 - + Stan Woosley
 - + Shawfeng Dong
- · SUNY Stony Brook
 - + Mike Zingale
- · LBNL
 - + Ann Almgren
 - + John Bell
 - + Andy Nonaka

- Hardware
- · NERSC
 - + Hopper
- · OLCF
 - + Jaguar
 - + Titan
- \cdot NCSA
 - BlueWaters

What is a SN Ia?

- · Transient event visible for months to years
- · "I" means no significant Hydrogen
- · "a" means strong Silicon lines

Standard(izable) Candles

- "Broader is brighter" –
 Phillips relation
- SN lightcurve width related to intrinsic brightness
- Allows for distance measure

2011 Nobel Prize in Physics: Perlmutter, Schmidt, and Riess

"for the discovery of the accelerating expansion of the Universe through observations of distant supernovae."

April 16th, 2013

Chris Malone - Thermonuclear Supernovae

- · C/O WD + companion
- $\cdot~$ WD approaches Chandrasekhar mass $(\sim 1.4 M_{\odot})$
- Core carbon fusion, ${}^{12}C + {}^{12}C$
- · Centuries of convection

Chris Malone - Thermonuclear Supernovae

C/O

Si - Ca

⁵⁶Ni

Fe

Centuries of Simmering

- Compression heats core $\rho_c \sim 2 \times 10^9 \text{ g cm}^{-3}$ $T_c \sim 4 \times 10^8 \text{ K}$
- Core carbon burning drives low Mach number convection $(M \sim 0.01)$ ${}^{12}C + {}^{12}C \rightarrow {}^{20}Ne + \alpha$
- Efficient simulation requires special care because of CFL condition

$$\Delta t_{\rm CFL} \lesssim \frac{\Delta x}{U_{c,\max}} \xrightarrow{(M \ll 1)} \frac{\Delta x}{c_s}$$

Chris Malone – Thermonuclear Supernovae

Previous Simulations of Simmering

Maestro

Nonaka+ 2011

- Finite volume, AMR, low Mach hydro code that filters acoustic waves
- Retains important compressible effects from burning, diffusion, stratification
- Average HSE $\frac{|\pi|}{p_0} = \mathcal{O}(M^2)$ background state

$$p(x,t) = p_0(r,t) + \pi(x,t)$$

$$\nabla p_0 = -\rho_0 g$$

$$\Delta t_{\rm CFL} \lesssim \frac{\Delta x}{U}$$

Chris Malone – Thermonuclear Supernovae

Maestro

- Advection using 2nd order Godunov
- Reactions using Strang splitting (Stiff ODEs)
- Diffusion semi-implicit (multigrid)
- Divergence constraint elliptic solve (multigrid)

Initial Conditions

April 16th, 2013

Chris Malone - Thermonuclear Supernovae

Zingale+ 2011

Chris Malone - Thermonuclear Supernovae

Inner 1000³ km

April 16th, 2013

Chris Malone – Thermonuclear Supernovae

Nonaka+ 2012

- · Added refinement to simulations with AMR
- Up to effective 2304³
 (2.1 km / zone)

Chris Malone – Thermonuclear Supernovae

Nonaka+ 2012, 4.3 km / zone

Green: $T_8 = 7.5$ Yellow: $T_8 = 7.7$ Orange: $T_8 = 7.9$

Ignition localized and off-center!

Castro

Almgren+ 2010,(Zhang+ 2011, 2013)

- Finite volume, AMR compressible (rad)-hydro code
- Sub-cycling in time
- Multigrid solvers for gravity/diffusion
- Same underlying data structures as Maestro (BoxLib)

Astrophysical Flames

- Flame thickness at ignition $\delta \sim 10^{-2}$ cm
- Radius of star $R_{\rm WD} \sim 10^8 \ {\rm cm}$
- · Thermal diffusion much more important than species diffusion $Le \gg 1$

Thickened Flame

Thickened Flame

Ma+ 2013

Burning timescale determined by table interpolation of off-line large reaction networks

$\log \rho$	T_{9f}	ρ_{7f}	$d\rho_7/d X_{12}$	BE/A	Ā
$(g \text{ cm}^{-3})$	$(10^9 {\rm K})$	(10^7 g cm^{-3})	(10^7 g cm^{-3})	(MeV/nucleon)	
6.40	1.790	0.122	0.258	8.040	18.340
6.50	1.903	0.158	0.316	8.046	18.430
6.60	2.036	0.203	0.390	8.057	18.630

Log T	Log density	Y_e	X(He)	X(Si-Ca)	X(Fe group)	Ā	BE/A	$\mathrm{d}Y_e/\mathrm{dt}$
9.80	9.30	0.500	1.601(-2)	5.174(-2)	0.9322	35.29	8.55635	2.617(-1)
9.80	9.30	0.495	1.205(-2)	4.097(-2)	0.9469	40.79	8.60340	1.920(-1)
9.80	9.30	0.490	9.798(-3)	2.832(-2)	0.9618	44.58	8.63952	1.313(-1)

Flame speed currently set to constant*

Maestro to Castro

Malone+ 2013

Maestro to Castro

Malone+ 2013

April 16th, 2013

Chris Malone – Thermonuclear Supernovae

Chris Malone – Thermonuclear Supernovae

April 16th, 2013

Chris Malone – Thermonuclear Supernovae

Slices – Interesting Burning

Turbulence Only In Ash?

user: cmalone Fri May 25 13:37:14 2012

Mag. vorticity

Plowing through convective field

Not much outside...

Effect of Convective Field

Comparison to Analytic Thermals

April 16th, 2013

Chris Malone - Thermonuclear Supernovae

Ignition Closer To the Center?

Chris Malone – Thermonuclear Supernovae

Conclusions

- · Localized ignition likely off-center (~50 km)
- · Ignition occurs in outflow region
- Background turbulence doesn't matter* unless you ignite near the center
- Most of the turbulence in the vicinity of the flame is within the ash
- · A "burn through" seems quite difficult

Future Work

- More high-resolution simmering/ignition models
- · Rotation (requires rework of Maestro algorithm)
- More realistic turbulent flame model (in progress, and see Ma+ 2013)
- · Better characterization of turbulence
- · Level sets?