Chris Malone Cosmology: HW\# 3
 October 17, 2006

QUESTION 1

What is the light travel time of a quasar observed at redshift $z=4.5$ in an Einstein-de Sitter Universe? Express your answer in terms of the Hubble Time.

In an Einstein-de Sitter universe, we know that the proper time at any redshift z is given by

$$
\begin{equation*}
t=\frac{2}{3} \frac{1}{H_{0}}\left(\frac{1}{1+z}\right)^{3 / 2}=\frac{2}{3}\left(\frac{1}{1+z}\right)^{3 / 2} \tau_{0}, \tag{1}
\end{equation*}
$$

where τ_{0} is the Hubble time. The total travel time is the difference between the time the photon was emitted, $t(z=4.5)$, and the time it is observed, t_{0}, i.e. today. Therefore

$$
\Delta t=\frac{2}{3}\left[1-\left(\frac{1}{1+4.5}\right)^{3 / 2}\right] \tau_{0} \approx 0.615 \tau_{0}
$$

QUESTION 2

Show that in an Einstein-de Sitter Universe, angular diameter for fixed size reaches a minimum at redshift $z=1.25$.

The angular diameter of an object is given as

$$
\begin{equation*}
\theta=\frac{l}{d_{\text {ang }}} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
d_{\text {ang }} & =\frac{d_{\text {lum }}}{(1+z)^{2}} \\
d_{\text {lum }} & =\frac{2 c}{H_{0}}((1+z)-\sqrt{1+z}) .
\end{aligned}
$$

So we see from (2) that θ has a minimum when $d_{\text {ang }}$ has a maximum. Basically, we need to look at

$$
\begin{aligned}
0 & =\frac{d}{d z}\left(\frac{1}{1+z}-\frac{1}{(1+z)^{3 / 2}}\right) \\
& =\frac{1}{(1+z)^{2}}-\left(\frac{3}{2}\right) \frac{1}{(1+z)^{5 / 2}} \\
\sqrt{1+z} & =\frac{3}{2} \\
z & =\frac{9}{4}-1=\frac{5}{4}=1.25 .
\end{aligned}
$$

QUESTION 3

Consider a galaxy of bolometric luminosity $L=10^{42} \mathrm{erg} \mathrm{s}^{-1}$ and diameter $d=30 \mathrm{kpc}$. Plot (1) the logarithm of the bolometric flux F and (2) the logarithm of the angular diameter θ of the galaxy versus $(1+z)$ over the redshift interval $z=0-20$ for Friedmann cosmological models (i.e. $\Omega_{\Lambda}=0$) with $\Omega_{m}=0,0.2,1$, and 2 .

First we have to derive ${ }^{1}$ a formula for the angular diameter distance, $d_{a n g}$, in terms of the comoving distance. We start with the FRW metric

$$
\begin{equation*}
d s^{2}=d t^{2}-\frac{R^{2}(t)}{c^{2}}\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right]=0 \tag{3}
\end{equation*}
$$

where r is the comoving distance, R the scale factor, k the curvature, Ω the solid angle from observer to source, and the last equality comes from the fact that light travels along null geodesics. If we consider light travelling radially $(d \Omega=0)$ from a source at $\left(t_{e}, r\right)$ to the observer at $\left(t_{0}, 0\right)$ we can rewrite this as

$$
\begin{equation*}
\int_{t_{0}}^{t_{e}} \frac{c d t}{R(t)}=-\int_{0}^{r} \frac{d r^{\prime}}{\sqrt{1-k r^{\prime 2}}}=\int_{r}^{0} \frac{d r^{\prime}}{\sqrt{1-k r^{\prime 2}}} \tag{4}
\end{equation*}
$$

where the "-" comes from the fact that as t increases, r decreases. We also know from the Friedmann equation that

$$
\begin{align*}
\dot{R}^{2} & =\frac{8 \pi G \rho R^{2}}{3}-k c^{2}=\frac{H_{0}^{2} R_{0}^{3} \Omega_{0}}{R}-H_{0}^{2} R_{0}^{2}\left(\Omega_{0}-1\right) \\
& =H_{0}^{2} R_{0}^{2}\left(\frac{\Omega_{0} R_{0}}{R}-\left(\Omega_{0}-1\right)\right) \\
\Rightarrow d t & =\frac{d R}{H_{0} R_{0} \sqrt{\frac{\Omega_{0} R_{0}}{R}-\left(\Omega_{0}-1\right)}}, \tag{5}
\end{align*}
$$

for a matter dominated universe. Plugging this back into (4) we have

$$
\begin{equation*}
\frac{c}{H_{0} R_{0}} \int_{R\left(t_{0}\right)=R_{0}}^{R\left(t_{e}\right)} \frac{d R}{R \sqrt{\Omega_{0} \frac{R_{0}}{R}-\left(\Omega_{0}-1\right)}}=\int_{r}^{0} \frac{d r^{\prime}}{\sqrt{1-k r^{\prime 2}}} \tag{6}
\end{equation*}
$$

Now recalling that $a=R / R_{0}=1 /(1+z)$, where z is the redshift of the source, the left hand side becomes

$$
\begin{equation*}
\frac{c}{H_{0} R_{0}} \int_{1}^{1 /(1+z)} \frac{d a}{a \sqrt{\frac{\Omega_{0}}{a}-\left(\Omega_{0}-1\right)}} \tag{7}
\end{equation*}
$$

[^0]Upon plugging back into (6) and rearranging integration order, we have

$$
\begin{equation*}
\int_{0}^{r} \frac{d r^{\prime}}{\sqrt{1-k r^{\prime 2}}}=\frac{c}{H_{0} R_{0}} \int_{1 /(1+z)}^{1} \frac{d a}{a \sqrt{\frac{\Omega_{0}}{a}-\left(\Omega_{0}-1\right)}} \tag{8}
\end{equation*}
$$

Note that the left hand side takes on a different functional form for different values of k. For example, if k is negative we may factor out the constants and obtain the following:

$$
\begin{aligned}
\int_{0}^{r} \frac{d r^{\prime}}{\sqrt{1+\frac{H_{0}^{2} R_{0}^{2}}{c^{2}}\left(1-\Omega_{0}\right) r^{\prime 2}}} & =\frac{c}{H_{0} R_{0}} \int_{1 /(1+z)}^{1} \frac{d a}{a \sqrt{\frac{\Omega_{0}}{a}-\left(\Omega_{0}-1\right)}} \\
\frac{c}{H_{0} R_{0} \sqrt{1-\Omega_{0}}} \int_{0}^{r} \frac{d r^{\prime}}{\sqrt{\frac{c^{2}}{H_{0}^{2} R_{0}^{2}\left(1-\Omega_{0}\right)}+r^{\prime 2}}} & =\frac{c}{H_{0} R_{0}} \int_{1 /(1+z)}^{1} \frac{d a}{a \sqrt{\frac{\Omega_{0}}{a}-\left(\Omega_{0}-1\right)}} \\
\sinh ^{-1}\left(\frac{r H_{0} R_{0} \sqrt{1-\Omega_{0}}}{c}\right) & =\sqrt{1-\Omega_{0}} \int_{1 /(1+z)}^{1} \frac{d a}{a \sqrt{\frac{\Omega_{0}}{a}-\left(\Omega_{0}-1\right)}} .
\end{aligned}
$$

More generally, we may write the comoving distance as follows:

$$
\begin{array}{rlrl}
k=-1\left(\Omega_{0}<1\right): & r=\frac{c}{H_{0} R_{0} \sqrt{1-\Omega_{0}}} \sinh \left[\chi\left(z, \Omega_{0}\right)\right] \\
k=0\left(\Omega_{0}=1\right): & & r=\chi(z, 1)=\frac{2 c}{H_{0}}\left(1-\frac{1}{\sqrt{1+z}}\right) \\
k=+1\left(\Omega_{0}>1\right): & r=\frac{c}{H_{0} R_{0} \sqrt{\Omega_{0}-1}} \sin \left[\chi\left(z, \Omega_{0}\right)\right]
\end{array}
$$

where we have plugged in the value of k as was done in (5). Now, the angular diameter distance is defined as

$$
d_{a n g}=\frac{l}{\theta}
$$

where l is the physical size of an object which subtends an angle θ on the sky. In a comoving formalism we say that the physical size of the object is l / a and that the comoving distance to the object is r as derived above. We may therefore say that the angle subtended by the object is

$$
\theta=\frac{l / a}{r} .
$$

Comparing these two expressions, we see that

$$
\begin{equation*}
d_{a n g}=a r=\frac{r}{1+z} . \tag{9}
\end{equation*}
$$

Similarly, an expression for the luminosity distance can be derived:

$$
\begin{equation*}
d_{l u m} \equiv\left(\frac{L}{4 \pi F}\right)^{1 / 2}=r(1+z) \tag{10}
\end{equation*}
$$

Finally, what we wish to plot is

$$
\begin{aligned}
F(z, \chi) & =\frac{L}{4 \pi r^{2}(\chi)} \frac{1}{(1+z)^{2}} \\
\theta(z, \chi) & =\frac{d}{r(\chi)}(1+z)
\end{aligned}
$$

for various values of χ (essentially Ω_{0}) and z. First we need to perform the integral $\chi\left(z, \Omega_{0}\right)$ for the various cases. This is done analytically for all values of Ω_{0} and the equations for r are:

$$
\begin{aligned}
k=-1: & \\
r & =\frac{c}{H_{0} R_{0} \sqrt{1-\Omega_{0}}} \sinh \left(\ln \left[\frac{2 \sqrt{1-\Omega_{0}}+2\left(1-\Omega_{0}\right)+\Omega_{0}}{2 \sqrt{1-\Omega_{0}} \sqrt{\frac{1-\Omega_{0}}{(1+z)^{2}}+\frac{\Omega_{0}}{1+z}}+2 \frac{1-\Omega_{0}}{1+z}+\Omega_{0}}\right]\right) \\
k=0: & \\
r & =\frac{2 c}{H_{0} R_{0}}\left(1-\frac{1}{\sqrt{1+z}}\right) \\
k=+1: & \\
r & =\frac{c}{H_{0} R_{0} \sqrt{\Omega_{0}-1}} \sin \left[\sin ^{-1}\left(1-2 \frac{\Omega_{0}-1}{\Omega_{0}(1+z)}\right)-\sin ^{-1}\left(\frac{2-\Omega_{0}}{\Omega_{0}}\right)\right] .
\end{aligned}
$$

These were now plugged into the previous definitions of the flux and angular diameter equations and plogged on a logscale. For these graphs, R_{0} was set to unity.

QUESTION 4

Derive the integral relationship between radial coordinate and redshift for a Friedmann-Lemaitre model of matter density parameter Ω_{m} and vacuum energy density parameter Ω_{Λ}. Solve the relationship using Simpson's rule, and plot the luminosity distance and angular diameter distance versus redshift for redshifts $z=0-1000$ for four choices of parameters: (1) $\Omega_{m}=0$, $\Omega_{\Lambda}=0 ;(2) \Omega_{m}=1, \Omega_{\Lambda}=0 ;(3) \Omega_{m}=0.3, \Omega_{\Lambda}=0.7$; (4) $\Omega_{m}=0.5$, $\Omega_{\Lambda}=0.5$.

To include a vacuum energy density we need to modify a few things from the previous problem. First, we take $\Omega_{0} \rightarrow \Omega_{m}$. Next, we have to modify k and the $d t$ from the Friedmann equation, (5):

$$
\begin{align*}
k & \rightarrow \frac{R_{0}^{2} H_{0}^{2}}{c^{2}}\left(\Omega_{m}+\Omega_{\Lambda}-1\right) \tag{11}\\
d t & \rightarrow \frac{d R}{H_{0}^{2} R_{0}^{2} \sqrt{\Omega_{m}\left(\frac{R_{0}}{R}\right)+\Omega_{\Lambda}\left(\frac{R}{R_{0}}\right)^{2}-\left(\Omega_{m}+\Omega_{\Lambda}-1\right)}} \tag{12}
\end{align*}
$$

If we perform the same manipulations as before, we have an integral relationship reminiscent of (8):
$\int_{0}^{r} \frac{d r^{\prime}}{\sqrt{1-k r^{\prime 2}}}=\frac{c}{H_{0} R_{0}} \chi^{\prime}\left(z, \Omega_{m}, \Omega_{\Lambda}\right) \equiv \frac{c}{H_{0} R_{0}} \int_{1 /(1+z)}^{1} \frac{d a}{a \sqrt{\frac{\Omega_{m}}{a}+\Omega_{\Lambda} a^{2}-\left(\Omega_{m}+\Omega_{\Lambda}-1\right)}}$.
As before, the left hand side takes on different values for different values of k. We are only considering cases where either $k=0$ or $k=-1$ and therefore:

$$
\begin{aligned}
k=-1\left(\Omega_{m}+\Omega_{\Lambda}<1\right): & r=\frac{c \sinh \left[\chi^{\prime}\left(z, \Omega_{m}, \Omega_{\Lambda}\right) \sqrt{1-\Omega_{m}-\Omega_{\Lambda}}\right]}{H_{0} R_{0} \sqrt{1-\Omega_{m}-\Omega_{\Lambda}}} \\
k=0\left(\Omega_{m}+\Omega_{\Lambda}=1\right): & r=\frac{c}{H_{0} R_{0}} \int_{1 /(1+z)}^{1} \frac{d a}{\sqrt{\Omega_{\Lambda} a^{4}+\Omega_{m} a}} .
\end{aligned}
$$

For the $k=-1$ case, our equation for r simplifies greatly because we have both Ω_{m} and Ω_{Λ} set to 0 . We therefore have

$$
r\left(\Omega_{\Lambda}=\Omega_{m}=0\right)=\frac{c}{H_{0} R_{0}} \sinh [\ln (1+z)] .
$$

We are a plotting the angular diameter distance and the luminosity distance (given by (9) and (10)) versus redshift.

QUESTION 5

Determine the proper and comoving volumes of the Universe bounded by $\Delta \Omega=1 \operatorname{arcmin}^{2}$ and redshift intervals of (1) $z=1-1.1$, (2) $z=3-3.1$, and (3) $z=10-10.1$ for an Einstein-de Sitter cosmological model.

We know the relation between comoving volume, V_{0}, and the proper volume, V

$$
V_{0}=V(1+z)^{3}
$$

The next thing we need is to express the proper volume in terms of the solid angle, and redshift as was done in class for an Einstein-de Sitter universe:

$$
V=\frac{4 c^{3} \Omega \Delta z}{H_{0}^{3}}\left(\frac{1}{(1+z)^{9 / 2}}-\frac{2}{(1+z)^{5}}+\frac{1}{(1+z)^{11 / 2}}\right)
$$

We use $H_{0}=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ and $\Omega=1 \operatorname{arcmin}^{2} \approx 8.46 \times 10^{-8} \mathrm{sr}$:

$$
\begin{aligned}
z=1 \text { to } 1.1 & \\
V & \approx 10.10 \mathrm{Mpc}^{3} \\
V_{0} & \approx 80.80 \mathrm{Mpc}^{3} \\
z=3 \text { to } 3.1 & \\
V & \approx 1.30 \mathrm{Mpc}^{3} \\
V_{0} & \approx 83.24 \mathrm{Mpc}^{3} \\
z=10 \text { to } 10.1 & \\
V & \approx 0.027 \mathrm{Mpc}^{3} \\
V_{0} & \approx 35.62 \mathrm{Mpc}^{3}
\end{aligned}
$$

APPENDIX:

PLOTTING WITH GNUPLOT

```
#
# ***** Program for plotting Flux and angular diameter
# as function of redshift.
# *****
# change terminal to LaTeX files
set terminal latex
# set constants
c = 3e5 # km / s
h = 7e-2 # km / s / kpc
L = 1e43 # ergs / s
d = 3e1 # kpc
aspr = 3600.0*180.0/pi # ', / rad
cmpkpc = 3.08568025e21 # cm / kpc
# set plot properties for angular diameter
set logscale y
set xrange [1:21]
#set yrange [1e-5:1e-4]
set xtics 1
set format x "$%g$"
set format y "$%T$"
set xlabel "$(1+z)$"
set ylabel '$\log(0(arcsec))\qquad\qquad$'
set out "ang.tex"
# define functions
# ********************* R for Omega Less than One ************************
ROLO(x,omega) = c*sinh(log((2*sqrt(1-omega) + 2*(1-omega) + omega)/(2*\
sqrt(1-omega)*sqrt((1-omega)/(x**2) + omega/x) + 2*(1-omega)/x + omega)))/(\
h*sqrt(1-omega))
# ********************* R for Omega Equal One ****************************
ROEO(x) = 2*c*(1-1/sqrt(x))/h
```

```
# ********************** R for Omega Greater than One **********************
ROGO(x,omega) =c*sin(asin(1-(2*(omega-1))/(omega*x)) - asin((2-omega)/omega\
))/(h*sqrt(omega-1))
# *********************** Theta for Omega Less than One *********************
TOLO(x,omega) = d*x/ROLO(x,omega)*aspr
# ********************** Theta for Omega Equal One *************************
TOEO(x) = d*x/ROEO(x)*aspr
# ********************* Theta for Omega Greater than One ******************
TOGO(x,omega) = d*x/ROGO(x,omega)*aspr
# plot the angular diameter for the values required
plot TOLO(x,0.0) title '$\Omega_0=0.0$' lt 1, TOLO(x,0.2) title \
'$\Omega_0=0.2$' lt 2, TOEO(x) title '$\Omega_0=1.0$' lt 3, TOGO(x,2.0) \
title '$\Omega_0=2.0$' lt 4
# set plot properties for flux
set ylabel '$\log(F(\frac{ergs}{cm^2}))\qquad\qquad$'
set out "flux.tex"
#set yrange [1e23:1e31]
# ********************* Flux for Omega Less than One ***********************
FOLO}(\textrm{x},\mathrm{ omega ) = (L/ (4*pi)) *(1/(x*ROLO (x,omega) *cmpkpc)) **2
# *********************** Flux for Omega Equal One ***************************
FOEO(x) = (L/(4*pi))*(1/(x*ROEO(x)*cmpkpc))**2
# ********************** Flux for Omega Greater than One *******************
FOGO(x,omega) = (L/(4*pi))*(1/(x*ROGO (x,omega)*cmpkpc))**2
# plot the flux for the values required
plot FOLO(x,0.0) title '$\Omega_0=0.0$' lt 1, FOLO(x,0.2) title \
'$\Omega_0=0.2$' lt 2, FOEO(x) title '$\Omega_0=1.0$' lt 3, FOGO(x,2.0) title \
'$\Omega_0=2.0$' lt 4
```

```
exit
```


NUMERICAL INTEGRATION

```
FUNCTION calcr, z, om, ol
if N_params() eq O then begin
    print,'Syntax: result = ldist(z, Om = , Ol = ])'
    print,'Returns luminosity distance in Mpc'
    print,'Assumes R_0 = O'
    return, 0.
endif
; Assuming H_O = 70 km / s / Mpc
HO = 70
c = 2.9979e5
zval = 1./(1.+z)
if (om + ol) EQ 1.0 then begin
; Simpson's Rule
;
; Equation we are integrating: dx
;
; sqrt(01*x^4 + Om*x)
;
; where Ol is the density fraction of the vacuum energy
    Om}\mathrm{ is the density fraction of the matter
;
; Initial position
        x1 = 1./(1.+z)
        dstep = (1.0 - x1)/2.
        x2 = x1 + dstep
        x3 = 1.
```

; Integrand values at the various positions

```
    f1 = 1.0/sqrt(om*x1 + ol*x1^4)
    f2 = 1.0/sqrt(om*x2 + ol*x2^4)
    f3 = 1.0/sqrt(om*x3 + ol*x3^4)
    sum = (dstep/3.)*(f1 + 4.*f2 + f3)
    r = c*sum/HO
    return,r
endif
; The analytic expression
if (om + ol) LT 1 then begin
    r = c*sinh(alog(1+z))/HO
    return,r
endif
end
; make an array: z[i] = (0.0, 1.0, ... , 999.0, 1000.0)
z=findgen(1001)
    angular diameter distance
;
; r
; dang = ---------
; (1 + z)
;
dang1 = calcr(z,0.0,0.0)/(1+z)
dang2 = calcr(z,1.0,0.0)/(1+z)
dang3 = calcr(z,0.3,0.7)/(1+z)
dang4 = calcr(z,0.5,0.5)/(1+z)
; luminosity distance
;
;
    dlumm = r * (1 + z)
```

```
dlum1 = (1+z)*calcr(z,0.0,0.0)
dlum2 = (1+z)*calcr(z,1.0,0.0)
dlum3 = (1+z)*calcr (z,0.3,0.7)
dlum4 = (1+z)*calcr(z,0.3,0.7)
set_plot,'PS'
device, filename='dang.ps'
plot,z,dang1,xtitle='z',ytitle='dang(Mpc)'$
    ,title='Angular Diameter Distance vs z',linestyle=0
oplot,z,dang2,linestyle=1
oplot,z,dang3,linestyle=2
oplot,z,dang4,linestyle=4
legend,['(1)','(2)','(3)','(4)'],linestyle=[0,1,2,4],/right,/bottom
device, filename='dlum.ps'
plot,z,dlum1,/ylog,xtitle='z',ytitle='dlum(Mpc)'$
    ,title='Log Luminosity Distance vs z',linestyle=0
oplot,z,dlum2,linestyle=1
oplot,z,dlum3,linestyle=2
oplot,z,dlum4,linestyle=4
legend,['(1)','(2)','(3)','(4)'],linestyle=[0,1,2,4],/right,/bottom
end
```


[^0]: ${ }^{1}$ I re-derive this here so I have a copy of the derivation. Skip to page 4 for the first graph.

