Chris Malone
Cosmology: HW# 3
October 17, 2006

QUESTION 1
What is the light travel time of a quasar observed at redshift z = 4.5 in an
Einstein-de Sitter Universe? Express your answer in terms of the Hubble
Time.

In an Einstein-de Sitter universe, we know that the proper time at any
redshift z is given by
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where 79 is the Hubble time. The total travel time is the difference between
the time the photon was emitted, t(z = 4.5), and the time it is observed, to,
i.e. today. Therefore
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QUESTION 2
Show that in an Einstein-de Sitter Universe, angular diameter for fixed size
reaches a minimum at redshift z = 1.25.

The angular diameter of an object is given as
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So we see from (2) that § has a minimum when dg,,, has a maximum.
Basically, we need to look at
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QUESTION 3
Consider a galaxy of bolometric luminosity L = 10*? erg s~ and diameter
d = 30 kpc. Plot (1) the logarithm of the bolometric flux F' and (2) the
logarithm of the angular diameter 6 of the galaxy versus (1 + z) over the
redshift interval z = 0-20 for Friedmann cosmological models (i.e. Q = 0)
with Q,, =0, 0.2, 1, and 2.

First we have to derive! a formula for the angular diameter distance,
dang, in terms of the comoving distance. We start with the FRW metric
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where r is the comoving distance, R the scale factor, k the curvature, €2 the
solid angle from observer to source, and the last equality comes from the
fact that light travels along null geodesics. If we consider light travelling
radially (d©2 = 0) from a source at (t.,r) to the observer at (to,0) we can
rewrite this as
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where the comes from the fact that as t increases, r decreases. We also
know from the Friedmann equation that
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for a matter dominated universe. Plugging this back into (4) we have
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Now recalling that a = R/Ry = 1/(1 + z), where z is the redshift of the
source, the left hand side becomes
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T re-derive this here so I have a copy of the derivation. Skip to page 4 for the first
graph.




Upon plugging back into (6) and rearranging integration order, we have
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Note that the left hand side takes on a different functional form for different
values of k. For example, if k is negative we may factor out the constants
and obtain the following:
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More generally, we may write the comoving distance as follows:
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where we have plugged in the value of k as was done in (5). Now, the angular
diameter distance is defined as

l
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where [ is the physical size of an object which subtends an angle 6 on the
sky. In a comoving formalism we say that the physical size of the object is
[/a and that the comoving distance to the object is r as derived above. We
may therefore say that the angle subtended by the object is
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Comparing these two expressions, we see that
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Similarly, an expression for the luminosity distance can be derived:

dyum = <47TLF>1/2 = r(1+ 2). (10)

Finally, what we wish to plot is
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for various values of x (essentially Q) and z. First we need to perform the
integral x(z, o) for the various cases. This is done analytically for all values
of Qg and the equations for r are:
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These were now plugged into the previous definitions of the flux and angular
diameter equations and plogged on a logscale. For these graphs, Ry was set
to unity.
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QUESTION 4
Derive the integral relationship between radial coordinate and redshift for
a Friedmann-Lemaitre model of matter density parameter €),, and vacuum
energy density parameter 25. Solve the relationship using Simpson’s rule,
and plot the luminosity distance and angular diameter distance versus red-
shift for redshifts z = 0-1000 for four choices of parameters: (1) Q,, = 0,
Qn =0; (2) Qo =1, Q4 = 0; (3) Uy = 0.3, Qp = 0.7; (4) Qp, = 0.5,
Qp =0.5.

To include a vacuum energy density we need to modify a few things from
the previous problem. First, we take ¢ — €,,,. Next, we have to modify k

and the dt from the Friedmann equation, (5):
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If we perform the same manipulations as before, we have an integral rela-
tionship reminiscent of (8):
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As before, the left hand side takes on different values for different values
of k. We are only considering cases where either ¥ = 0 or k = —1 and
therefore:
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For the k = —1 case, our equation for r simplifies greatly because we have

both €2, and Q4 set to 0. We therefore have
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We are a plotting the angular diameter distance and the luminosity dis-
tance (given by (9) and (10)) versus redshift.
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QUESTION 5
Determine the proper and comoving volumes of the Universe bounded by
AQ =1 arcmin? and redshift intervals of (1) z = 1-1.1, (2) z = 3-3.1, and
(3) z = 10-10.1 for an Einstein-de Sitter cosmological model.

We know the relation between comoving volume, V4, and the proper
volume, V

Vo=V({1+2)>

The next thing we need is to express the proper volume in terms of the solid
angle, and redshift as was done in class for an Einstein-de Sitter universe:
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We use Hy = 70 km s~ Mpc™! and Q = 1 arcmin® ~ 8.46 x 1078 sr:

z=1to 1.1
V &~ 10.10 Mpc?
Vo ~ 80.80 Mpc?
z=3t%03.1
V ~ 1.30 Mpc®
Vo ~ 83.24 Mpc?
z =10 to 10.1
V &~ 0.027 Mpc?
Vo ~ 35.62 Mpc?



APPENDIX:
PLOTTING WITH GNUPLOT

#

# *xxxxx Program for plotting Flux and angular diameter
# as function of redshift.

#okokokok

# change terminal to LaTeX files
set terminal latex

set constants

3¢5 # km / s

7Te-2 # km / s / kpc

1e43 # ergs / s

3el # kpc

aspr = 3600.0%180.0/pi # ’’ / rad
cmpkpc = 3.08568025e21 # cm / kpc

Q0B o #=
]

# set plot properties for angular diameter

set logscale y

set xrange [1:21]

#set yrange [le-5:1e-4]

set xtics 1

set format x "$%g$"

set format y "$%T$"

set xlabel "$(1+z)$"

set ylabel ’$\log(\theta(arcsec))\gqquad\qquad$’
set out "ang.tex"

# define functions

# woooooockkkkkkkkkkk R for Omega Less than One sxkksskkkskskskskskskskskskkkkkkk
ROLO(x,omega) = c*sinh(log((2*sqrt(l-omega) + 2+(l-omega) + omega)/(2%\
sqrt (1-omega) *sqrt ((1-omega) / (x**2) + omega/x) + 2*(l-omega)/x + omega)))/(\

h*sqrt (1-omega))

# okkkskokollokolokokokkkkokkkk R for Omega Equal One kkskskskskskokskokokokskskskskokofokskokokokokokokok

ROEO(x) = 2%c*(1-1/sqrt(x))/h



# orkkskokololokolokkokkkkskkkk R for Omega Greater than One skkkkkskskskskskofokskokkkosksksksk
ROGO(x,omega) = c*sin(asin(1-(2x(omega-1))/(omega*x)) - asin((2-omega)/omegal
))/ (h*sqrt (omega-1))

# kkkokkkokkkokkkokkkkk Theta for Omega Less than One skskckskkokskokkskokiokkkokk
TOLO(x,omega) = d*x/ROLO(x,omega)*aspr

# kkkkkkkkkkkkkkkkkkkk Theta for Omega Equal One skkskoskskskskokokkkokokokokskokskokskkkk
TOEO(x) = d*x/ROEO(x)*aspr

# okkkskokokolokokokkokkkkkkkk Theta for Omega Greater than One skkskskskskookskokkkoksksksxk
TOGO(x,omega) = d*x/ROGO(x,omega)*aspr

# plot the angular diameter for the values required

plot TOLO(x,0.0) title ’$\Omega_0=0.0$’ 1t 1, TOLO(x,0.2) title \
’$\Omega_0=0.2$> 1t 2, TOEO(x) title ’$\Omega_0=1.0$’ 1t 3, TOGO(x,2.0) \
title ’$\Omega_0=2.0%’ 1t 4

# set plot properties for flux

set ylabel ’$\log(F(\frac{ergs}{cm~2}))\qquad\qquad$’
set out "flux.tex"
#set yrange [1e23:1e31]

# okkkskokololokolokkokkkkskokkk Flux for Omega Less than One skkokkkskskskskofokkokokkokksksk
FOLO(x,omega) = (L/(4*pi))*(1/(x*ROLO(x,omega)*cmpkpc))**2

# kckkokkoookolkokkkokk Flux for Omega Equal One skokksoksskokokskkokskokkskokkokkkodok
FOEO(x) = (L/(4%*pi))=*(1/(x*ROEQ(x)*cmpkpc))**2

H# skkskskskkkkokokkokkkkkkkkk Flux for Dmega Greater than 0ne skskkkskskkkkkkkkkkk
FOGO(x,omega) = (L/(4*pi))*(1/(x*ROGO(x,omega)*cmpkpc))**2

# plot the flux for the values required

plot FOLO(x,0.0) title ’$\Omega_0=0.0$%’ 1t 1, FOLO(x,0.2) title \
’$\Omega_0=0.2%’> 1t 2, FOEO(x) title ’$\Omega_0=1.0%’ 1t 3, FOGO(x,2.0) title \
’$\Omega_0=2.0%> 1t 4
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exit
NUMERICAL INTEGRATION
FUNCTION calcr, z, om, ol

if N_params() eq O then begin
print,’Syntax: result = ldist(z, Om = , 01 = 1)’
print,’Returns luminosity distance in Mpc’
print,’Assumes R_O = 0’
return, O.

endif

; Assuming H 0 = 70 km / s / Mpc
HO = 70
c = 2.9979eb

zval = 1./(1.+z)

if (om + ol) EQ 1.0 then begin
; Simpson’s Rule
; Equation we are integrating: dx

; sqrt (01*x"4 + Om*x)

5 where 01 is the density fraction of the vacuum energy
; Om is the density fraction of the matter

; Initial position
x1 =1./(1.+2)

dstep = (1.0 - x1)/2.

x2 = x1 + dstep
x3 = 1.

; Integrand values at the various positions
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f1 = 1.0/sqrt(om*xl + ol*x174)
f2 = 1.0/sqrt(om*x2 + 0l*x274)
£f3 = 1.0/sqrt(om*x3 + 01*x374)

sum = (dstep/3.)*(f1 + 4.%f2 + £3)

r = cxsum/HO
return,r

endif

3

The analytic expression

if (om + ol) LT 1 then begin

r = cxsinh(alog(1+z))/HO
return,r

endif

end

; make an array: z[i] = (0.0, 1.0,
z=

I

findgen(1001)

angular diameter distance

; T
; dang = -———————-

; (1 + z)

dangl = calcr(z,0.0,0.0)/(1+z)

dang2 = calcr(z,1.0,0.0)/(1+z)
dang3 = calcr(z,0.3,0.7)/(1+z)
dang4 = calcr(z,0.5,0.5)/(1+z)

3

I

; luminosity distance

dlumm = r * (1 + 2)
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dluml = (1+z)*calcr(z,0.0,0.0)
dlum2 = (1+z)*calcr(z,1.0,0.0)
dlum3 = (1+z)*calcr(z,0.3,0.7)
dlum4 = (1+z)*calcr(z,0.3,0.7)

set_plot, ’PS’
device, filename=’dang.ps’

plot,z,dangl,xtitle=’z’,ytitle="dang(Mpc)’$
,title=’Angular Diameter Distance vs z’,linestyle=0
oplot,z,dang2,linestyle=1
oplot,z,dang3,linestyle=2
oplot,z,dang4,linestyle=4
legend, [’ (1)’,°(2),°(3)’,’(4)’],1linestyle=[0,1,2,4],/right,/bottom

device, filename=’dlum.ps’

plot,z,dluml,/ylog,xtitle="z’ ,ytitle="dlum(Mpc)’$
,title="Log Luminosity Distance vs z’,linestyle=0
oplot,z,dlum2,linestyle=1
oplot,z,dlum3,linestyle=2
oplot,z,dlum4,linestyle=4
legend, [’(1)’,’(2)?,°(3)?,’(4)’],1linestyle=[0,1,2,4],/right,/bottom

end

13



