
Chris Malone
Cosmology: HW# 3

October 17, 2006

QUESTION 1
What is the light travel time of a quasar observed at redshift z = 4.5 in an
Einstein-de Sitter Universe? Express your answer in terms of the Hubble
Time.

In an Einstein-de Sitter universe, we know that the proper time at any
redshift z is given by

t =
2
3

1
H0

(
1

1 + z

)3/2

=
2
3

(
1

1 + z

)3/2

τ0, (1)

where τ0 is the Hubble time. The total travel time is the difference between
the time the photon was emitted, t(z = 4.5), and the time it is observed, t0,
i.e. today. Therefore

∆t =
2
3

[
1−

(
1

1 + 4.5

)3/2
]

τ0 ≈ 0.615τ0.

QUESTION 2
Show that in an Einstein-de Sitter Universe, angular diameter for fixed size
reaches a minimum at redshift z = 1.25.

The angular diameter of an object is given as

θ =
l

dang
(2)

where

dang =
dlum

(1 + z)2

dlum =
2c

H0

(
(1 + z)−

√
1 + z

)
.

So we see from (2) that θ has a minimum when dang has a maximum.
Basically, we need to look at

0 =
d

dz

(
1

1 + z
− 1

(1 + z)3/2

)
=

1
(1 + z)2

−
(

3
2

)
1

(1 + z)5/2

√
1 + z =

3
2

z =
9
4
− 1 =

5
4

= 1.25.
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QUESTION 3
Consider a galaxy of bolometric luminosity L = 1042 erg s−1 and diameter
d = 30 kpc. Plot (1) the logarithm of the bolometric flux F and (2) the
logarithm of the angular diameter θ of the galaxy versus (1 + z) over the
redshift interval z = 0–20 for Friedmann cosmological models (i.e. ΩΛ = 0)
with Ωm = 0, 0.2, 1, and 2.

First we have to derive1 a formula for the angular diameter distance,
dang, in terms of the comoving distance. We start with the FRW metric

ds2 = dt2 − R2(t)
c2

[
dr2

1− kr2
+ r2dΩ2

]
= 0, (3)

where r is the comoving distance, R the scale factor, k the curvature, Ω the
solid angle from observer to source, and the last equality comes from the
fact that light travels along null geodesics. If we consider light travelling
radially (dΩ = 0) from a source at (te, r) to the observer at (t0, 0) we can
rewrite this as ∫ te

t0

cdt

R(t)
= −

∫ r

0

dr′√
1− kr′2

=
∫ 0

r

dr′√
1− kr′2

, (4)

where the “−” comes from the fact that as t increases, r decreases. We also
know from the Friedmann equation that

Ṙ2 =
8πGρR2

3
− kc2 =

H2
0R3

0Ω0

R
−H2

0R2
0 (Ω0 − 1)

= H2
0R2

0

(
Ω0R0

R
− (Ω0 − 1)

)
⇒ dt =

dR

H0R0

√
Ω0R0

R − (Ω0 − 1)
, (5)

for a matter dominated universe. Plugging this back into (4) we have

c

H0R0

∫ R(te)

R(t0)=R0

dR

R
√

Ω0
R0
R − (Ω0 − 1)

=
∫ 0

r

dr′√
1− kr′2

. (6)

Now recalling that a = R/R0 = 1/(1 + z), where z is the redshift of the
source, the left hand side becomes

c

H0R0

∫ 1/(1+z)

1

da

a
√

Ω0
a − (Ω0 − 1)

, (7)

1I re-derive this here so I have a copy of the derivation. Skip to page 4 for the first
graph.
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Upon plugging back into (6) and rearranging integration order, we have∫ r

0

dr′√
1− kr′2

=
c

H0R0

∫ 1

1/(1+z)

da

a
√

Ω0
a − (Ω0 − 1)

. (8)

Note that the left hand side takes on a different functional form for different
values of k. For example, if k is negative we may factor out the constants
and obtain the following:∫ r

0

dr′√
1 + H2

0R2
0

c2
(1− Ω0)r′2

=
c

H0R0

∫ 1

1/(1+z)

da

a
√

Ω0
a − (Ω0 − 1)

c

H0R0

√
1− Ω0

∫ r

0

dr′√
c2

H2
0R2

0(1−Ω0)
+ r′2

=
c

H0R0

∫ 1

1/(1+z)

da

a
√

Ω0
a − (Ω0 − 1)

sinh−1

(
rH0R0

√
1− Ω0

c

)
=

√
1− Ω0

∫ 1

1/(1+z)

da

a
√

Ω0
a − (Ω0 − 1)

.

More generally, we may write the comoving distance as follows:

k = −1 (Ω0 < 1) : r =
c

H0R0

√
1− Ω0

sinh [χ(z,Ω0)]

k = 0 (Ω0 = 1) : r = χ(z, 1) =
2c

H0

(
1− 1√

1 + z

)
k = +1 (Ω0 > 1) : r =

c

H0R0

√
Ω0 − 1

sin [χ(z,Ω0)] ,

where we have plugged in the value of k as was done in (5). Now, the angular
diameter distance is defined as

dang =
l

θ

where l is the physical size of an object which subtends an angle θ on the
sky. In a comoving formalism we say that the physical size of the object is
l/a and that the comoving distance to the object is r as derived above. We
may therefore say that the angle subtended by the object is

θ =
l/a

r
.

Comparing these two expressions, we see that

dang = ar =
r

1 + z
. (9)
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Similarly, an expression for the luminosity distance can be derived:

dlum ≡
(

L

4πF

)1/2

= r(1 + z). (10)

Finally, what we wish to plot is

F (z, χ) =
L

4πr2(χ)
1

(1 + z)2

θ(z, χ) =
d

r(χ)
(1 + z)

for various values of χ (essentially Ω0) and z. First we need to perform the
integral χ(z,Ω0) for the various cases. This is done analytically for all values
of Ω0 and the equations for r are:

k = −1 :

r =
c

H0R0

√
1− Ω0

sinh

ln

 2
√

1− Ω0 + 2(1− Ω0) + Ω0

2
√

1− Ω0

√
1−Ω0
(1+z)2

+ Ω0
1+z + 21−Ω0

1+z + Ω0


k = 0 :

r =
2c

H0R0

(
1− 1√

1 + z

)
k = +1 :

r =
c

H0R0

√
Ω0 − 1

sin
[
sin−1

(
1− 2

Ω0 − 1
Ω0(1 + z)

)
− sin−1

(
2− Ω0

Ω0

)]
.

These were now plugged into the previous definitions of the flux and angular
diameter equations and plogged on a logscale. For these graphs, R0 was set
to unity.
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QUESTION 4
Derive the integral relationship between radial coordinate and redshift for
a Friedmann-Lemaitre model of matter density parameter Ωm and vacuum
energy density parameter ΩΛ. Solve the relationship using Simpson’s rule,
and plot the luminosity distance and angular diameter distance versus red-
shift for redshifts z = 0–1000 for four choices of parameters: (1) Ωm = 0,
ΩΛ = 0; (2) Ωm = 1, ΩΛ = 0; (3) Ωm = 0.3, ΩΛ = 0.7; (4) Ωm = 0.5,
ΩΛ = 0.5.

To include a vacuum energy density we need to modify a few things from
the previous problem. First, we take Ω0 → Ωm. Next, we have to modify k
and the dt from the Friedmann equation, (5):

k → R2
0H

2
0

c2
(Ωm + ΩΛ − 1) (11)

dt → dR

H2
0R2

0

√
Ωm

(
R0
R

)
+ ΩΛ

(
R
R0

)2
− (Ωm + ΩΛ − 1)

. (12)

If we perform the same manipulations as before, we have an integral rela-
tionship reminiscent of (8):∫ r

0

dr′√
1− kr′2

=
c

H0R0
χ′(z,Ωm,ΩΛ) ≡ c

H0R0

∫ 1

1/(1+z)

da

a
√

Ωm
a + ΩΛa2 − (Ωm + ΩΛ − 1)

.

As before, the left hand side takes on different values for different values
of k. We are only considering cases where either k = 0 or k = −1 and
therefore:

k = −1 (Ωm + ΩΛ < 1) : r =
c sinh

[
χ′(z,Ωm,ΩΛ)

√
1− Ωm − ΩΛ

]
H0R0

√
1− Ωm − ΩΛ

k = 0 (Ωm + ΩΛ = 1) : r =
c

H0R0

∫ 1

1/(1+z)

da√
ΩΛa4 + Ωma

.

For the k = −1 case, our equation for r simplifies greatly because we have
both Ωm and ΩΛ set to 0. We therefore have

r(ΩΛ = Ωm = 0) =
c

H0R0
sinh [ln (1 + z)] .

We are a plotting the angular diameter distance and the luminosity dis-
tance (given by (9) and (10)) versus redshift.
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QUESTION 5
Determine the proper and comoving volumes of the Universe bounded by
∆Ω = 1 arcmin2 and redshift intervals of (1) z = 1–1.1, (2) z = 3–3.1, and
(3) z = 10–10.1 for an Einstein-de Sitter cosmological model.

We know the relation between comoving volume, V0, and the proper
volume, V

V0 = V (1 + z)3.

The next thing we need is to express the proper volume in terms of the solid
angle, and redshift as was done in class for an Einstein-de Sitter universe:

V =
4c3Ω∆z

H3
0

(
1

(1 + z)9/2
− 2

(1 + z)5
+

1
(1 + z)11/2

)
.

We use H0 = 70 km s−1 Mpc−1 and Ω = 1 arcmin2 ≈ 8.46× 10−8 sr:

z = 1 to 1.1
V ≈ 10.10 Mpc3

V0 ≈ 80.80 Mpc3

z = 3 to 3.1
V ≈ 1.30 Mpc3

V0 ≈ 83.24 Mpc3

z = 10 to 10.1
V ≈ 0.027 Mpc3

V0 ≈ 35.62 Mpc3

8



APPENDIX:
PLOTTING WITH GNUPLOT

#
# ***** Program for plotting Flux and angular diameter
# as function of redshift.
# *****

# change terminal to LaTeX files
set terminal latex

# set constants
c = 3e5 # km / s
h = 7e-2 # km / s / kpc
L = 1e43 # ergs / s
d = 3e1 # kpc
aspr = 3600.0*180.0/pi # ’’ / rad
cmpkpc = 3.08568025e21 # cm / kpc

# set plot properties for angular diameter
set logscale y
set xrange [1:21]
#set yrange [1e-5:1e-4]
set xtics 1
set format x "$%g$"
set format y "$%T$"
set xlabel "$(1+z)$"
set ylabel ’$\log(\theta(arcsec))\qquad\qquad$’
set out "ang.tex"

# define functions

# ******************** R for Omega Less than One ***********************
ROLO(x,omega) = c*sinh(log((2*sqrt(1-omega) + 2*(1-omega) + omega)/(2*\
sqrt(1-omega)*sqrt((1-omega)/(x**2) + omega/x) + 2*(1-omega)/x + omega)))/(\
h*sqrt(1-omega))

# ******************** R for Omega Equal One ***************************
ROEO(x) = 2*c*(1-1/sqrt(x))/h
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# ******************** R for Omega Greater than One ********************
ROGO(x,omega) = c*sin(asin(1-(2*(omega-1))/(omega*x)) - asin((2-omega)/omega\
))/(h*sqrt(omega-1))

# ******************** Theta for Omega Less than One *******************
TOLO(x,omega) = d*x/ROLO(x,omega)*aspr

# ******************** Theta for Omega Equal One ***********************
TOEO(x) = d*x/ROEO(x)*aspr

# ******************** Theta for Omega Greater than One ****************
TOGO(x,omega) = d*x/ROGO(x,omega)*aspr

# plot the angular diameter for the values required
plot TOLO(x,0.0) title ’$\Omega_0=0.0$’ lt 1, TOLO(x,0.2) title \
’$\Omega_0=0.2$’ lt 2, TOEO(x) title ’$\Omega_0=1.0$’ lt 3, TOGO(x,2.0) \
title ’$\Omega_0=2.0$’ lt 4

# set plot properties for flux

set ylabel ’$\log(F(\frac{ergs}{cm^2}))\qquad\qquad$’
set out "flux.tex"
#set yrange [1e23:1e31]

# ******************** Flux for Omega Less than One ********************
FOLO(x,omega) = (L/(4*pi))*(1/(x*ROLO(x,omega)*cmpkpc))**2

# ******************** Flux for Omega Equal One ************************
FOEO(x) = (L/(4*pi))*(1/(x*ROEO(x)*cmpkpc))**2

# ******************** Flux for Omega Greater than One *****************
FOGO(x,omega) = (L/(4*pi))*(1/(x*ROGO(x,omega)*cmpkpc))**2

# plot the flux for the values required
plot FOLO(x,0.0) title ’$\Omega_0=0.0$’ lt 1, FOLO(x,0.2) title \
’$\Omega_0=0.2$’ lt 2, FOEO(x) title ’$\Omega_0=1.0$’ lt 3, FOGO(x,2.0) title \
’$\Omega_0=2.0$’ lt 4
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exit

NUMERICAL INTEGRATION

FUNCTION calcr, z, om, ol

if N_params() eq 0 then begin
print,’Syntax: result = ldist(z, Om = , Ol = ])’
print,’Returns luminosity distance in Mpc’
print,’Assumes R_0 = 0’
return, 0.

endif

; Assuming H_0 = 70 km / s / Mpc
H0 = 70
c = 2.9979e5

zval = 1./(1.+z)

if (om + ol) EQ 1.0 then begin
; Simpson’s Rule
;
; Equation we are integrating: dx
; -------------------
; sqrt(Ol*x^4 + Om*x)
;
; where Ol is the density fraction of the vacuum energy
; Om is the density fraction of the matter
;

; Initial position
x1 = 1./(1.+z)

dstep = (1.0 - x1)/2.

x2 = x1 + dstep
x3 = 1.

; Integrand values at the various positions
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f1 = 1.0/sqrt(om*x1 + ol*x1^4)
f2 = 1.0/sqrt(om*x2 + ol*x2^4)
f3 = 1.0/sqrt(om*x3 + ol*x3^4)

sum = (dstep/3.)*(f1 + 4.*f2 + f3)

r = c*sum/H0
return,r

endif

; The analytic expression
if (om + ol) LT 1 then begin

r = c*sinh(alog(1+z))/H0
return,r

endif

end

; make an array: z[i] = (0.0, 1.0, ... , 999.0, 1000.0)
z=findgen(1001)

; angular diameter distance
;
; r
; dang = ---------
; (1 + z)
;

dang1 = calcr(z,0.0,0.0)/(1+z)
dang2 = calcr(z,1.0,0.0)/(1+z)
dang3 = calcr(z,0.3,0.7)/(1+z)
dang4 = calcr(z,0.5,0.5)/(1+z)

; luminosity distance
;
;
; dlumm = r * (1 + z)
;
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dlum1 = (1+z)*calcr(z,0.0,0.0)
dlum2 = (1+z)*calcr(z,1.0,0.0)
dlum3 = (1+z)*calcr(z,0.3,0.7)
dlum4 = (1+z)*calcr(z,0.3,0.7)

set_plot,’PS’
device, filename=’dang.ps’

plot,z,dang1,xtitle=’z’,ytitle=’dang(Mpc)’$
,title=’Angular Diameter Distance vs z’,linestyle=0

oplot,z,dang2,linestyle=1
oplot,z,dang3,linestyle=2
oplot,z,dang4,linestyle=4
legend,[’(1)’,’(2)’,’(3)’,’(4)’],linestyle=[0,1,2,4],/right,/bottom

device, filename=’dlum.ps’

plot,z,dlum1,/ylog,xtitle=’z’,ytitle=’dlum(Mpc)’$
,title=’Log Luminosity Distance vs z’,linestyle=0

oplot,z,dlum2,linestyle=1
oplot,z,dlum3,linestyle=2
oplot,z,dlum4,linestyle=4
legend,[’(1)’,’(2)’,’(3)’,’(4)’],linestyle=[0,1,2,4],/right,/bottom

end
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