
Chris Malone
Nuclear: HW # 5

March 26, 2007

QUESTION 1
For 158

66Dy look up energies of the rotational band based on the ground state (J = 0 . . . 28+). Plot
momentum of inertia I(J) (defined as EJ = J(J+1)

2I ) versus rotational frequency (ω = ∂EJ
∂J ≈

EJ+2−EJ

2 ). Explain the observed behavior. Compare I to that of a sphere with R = 1.2A1/3,
A = 158.

Using data from the NNDC at BNL, we have:

Jπ EJ (MeV)
0+ 0.0
2+ 0.0989
4+ 0.3171
6+ 0.6377
8+ 1.0439

10+ 1.5201
12+ 2.0489
14+ 2.6123
16+ 3.1904
18+ 3.7814
20+ 4.4072
22+ 5.0853
24+ 5.8200
26+ 6.6126
28+ 7.4540

ω ≈ EJ+2−EJ

2 (MeV) I(J) = J(J+1)
2EJ

(MeV−1)
0.11 30.33
0.16 31.54
0.20 32.93
0.24 34.49
0.26 36.18
0.28 38.07
0.29 40.19
0.30 42.63
0.31 45.22
0.34 47.65
0.37 49.75
0.40 51.55
0.42 53.08
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It almost seems as though there is a phase transition in the nuclei. Around ω ≈ 0.28 MeV, the
moment of inertia changes very rapidly with little change in the rotation frequency. It could be
that perhaps the nuclide starts off only slightly deformed, then as the rotation frequency increases
it becomes more oblate and thus slowly increases in moment of inertia. Then at one point it has
stretched so much that it becomes a thin disk, which might be marked by this sudden increase
in moment of inertia. Then the radius of the disk continues to increase with increasing rotational
frequency, while the thickness changes very little, thus giving rise to an increase in moment of
inertia again.

To compare with a sphere, where the moment of inertia is given as I = 2
5MR2, we have for this

case

I =
2
5

(158 · 938)

(
1.2 · 1581/3

197

)2

≈ 64.29 MeV−1.

QUESTION 2
For 209Pb look up all excited states with E < 3 MeV. Using spherical shell model levels, explain
the quantum number of the ground and (as many as possible) excited states.

Again from BNL we have the following data for 209Pb:

Jπ E(MeV) Jπ E(MeV)
9/2+ 0.0 7/2+ 2.491

11/2+ 0.7788 3/2+ 2.538
15/2− 1.423 5/2−, 7/2− 2.563
5/2+ 1.5671 (11/2−) 2.589
1/2+ 2.0322 5/2− 2.738
1/2− 2.1494 5/2− 2.869

(3/2−) 2.319 3/2− 2.904
5/2−, 7/2− 2.463 3/2−, 5/2− 2.994

The ground state is simply the double magic 208Pb core plus a neutron in the next lowest lying
level which is 2g9/2 which gives rise to J = 9/2 and the g state has positive parity, therefore the
ground state is 9/2+. I am unsure as to why the next lowest lying level is 11/2+ but this seems to
correspond to the 1i11/2 but should have parity −. The only other state which I see explained by
the handout you gave in class is the 15/2+ which I believe corresponds to the 1j15/2 state and has
the correct parity. I don’t understand the notation of the states in parentheses, or the states which
have two values of Jπ. I assume most of these states are in the N = 7 states which are not shown
on the diagram we have, nor could I find online. I guess my confusion comes from the fact that I
would expect the state right above the ground state to be, from the handout, the 3d5/2 state which
would have Jπ = 5/2−. Now, there are a lot of those that show up in the line data, but since they
have higher energies, I expect them to be in states with N > 6.
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QUESTION 3
The ds-shell single-particle energies with respect to 16O core are: ε1d5/2 = −4.15 MeV, ε2s1/2 =
−3.28 MeV, and ε1d3/2 = +0.93 MeV. A particular effective interaction has the following set of
two-body matrix elements:

〈1d5/2, 1d5/2;J = 0, T = 1|V |1d5/2, 1d5/2;J = 0, T = 1〉 = −2.0094 MeV
〈1d5/2, 1d5/2;J = 0, T = 1|V |1d3/2, 1d3/2;J = 0, T = 1〉 = −3.8935 MeV
〈1d5/2, 1d5/2;J = 0, T = 1|V |2s1/2, 2s1/2;J = 0, T = 1〉 = −1.3225 MeV
〈1d3/2, 1d3/2;J = 0, T = 1|V |1d3/2, 1d3/2;J = 0, T = 1〉 = −0.8119 MeV
〈1d3/2, 1d3/2;J = 0, T = 1|V |2s1/2, 2s1/2;J = 0, T = 1〉 = −0.8385 MeV
〈2s1/2, 2s1/2;J = 0, T = 1|V |2s1/2, 2s1/2;J = 0, T = 1〉 = −2.3068 MeV

a Calculate the ground state binding energy of 18O with respect to 16O and compare the result
obtained from a table of mass excess. What are the excitation energies of the two other 0+

states in this space?

b Obtain the ground state wave function of 18O and use it to calculate the relative probability
for finding a neutron in the 1d5/2, 2s1/2, and 1d3/2 single-particle states in 18O. The results
are essentially the spectroscopic factors for one-neutron pickup reactions.

a For this problem we start by writing the Hamiltonian of the system as

H = H1 +H2 + V12

where H1,2 are the interactions of particle (1,2) with the 16O core and V12 is the two body
interaction given by the matrix elements above. We then construct the Hamiltonian:

H =

 2εd5/2 + Vd5/2,d5/2 Vd5/2,s1/2 Vd5/2,d3/2

Vs1/2,d5/2 2εs1/2 + Vs1/2,s1/2 Vs1/2,d3/2

Vd3/2,d5/2 Vd3/2,s1/2 2εd3/2 + Vd3/2,d3/2


=

 −10.31 −1.32 −3.89
−1.32 −8.87 −0.84
−3.89 −0.84 1.05

 =

 −12.20 0 0
0 −8.20 0
0 0 2.27


Therefore, the binding energy of the ground state (1d5/2) of 18O with respect to the 16O core
is −12.20. Using the equation of mass excess from the BNL website, we have

B(Z,N) = Z(mp +me) +Nmn −M(Z,N) = Z(mp +me) +Nmn − ∆ −A ∗ amu.
B(8, 8) = 8(mp +me) + 8mn + 4.737 − 16 ∗ amu
B(8, 10) = 8(mp +me) + 10mn + 0.7815 − 18 ∗ amu

B(8, 8) −B(8, 10) = 4.737 − 0.7815 − 2 ∗ (mn − amu) ≈ −12.18 MeV

which is very close to the value that we get from the previous method.
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The excitation energies from the ground state of 18O are then

∆E2s1/2 = −8.20 + 12.20 = 4.00 MeV
∆E1d3/2 = 2.27 + 12.20 = 14.47 MeV

b If I take the above mentioned matrix and find the eigenvectors using Maple, I get:

λ = −12.20 : ψ =

 0.87
0.41
0.28


λ = −8.20 : ψ =

 −0.41
0.91
−0.09


λ = 2.27 : ψ =

 −0.29
−0.04
0.96


which seem to be normalized to unity. So the ground state wavefunction is

|ψg〉 = 0.87 |1d5/2〉 + 0.41 |2s1/2〉 + 0.28 |1d3/2〉

and therefore

〈1d5/2|ψg〉 ≈ 0.76
〈2s1/2|ψg〉 ≈ 0.17
〈1d3/2|ψg〉 ≈ 0.08
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