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IIIA3.1
Consider the action

S[φ] =
∫
dtdD−1x

[
−1

2
φ̇2 + V (φ)

]
for potential V (φ) (a function, not a functional).

a Find the field equations.

b Assume V (φ) = λφn for some positive integer n and constant, dimen-
sionless λ, in units ~ = c = 1. Use dimensional analysis to relate n and
D (of course, also a positive integer), and list all paired possibilities of
(n,D).

a To find the field equations, we simply need to set the variation of the
action to zero:

δS[φ] = 0 = δ

(∫
dtdD−1x

[
−1

2
φ̇2 + V (φ)

])
=

∫
dtdD−1x

[
−φ̇δφ̇+ δV (φ)

]
=

∫
dtdD−1x

[
φ̈δφ+

∂V (φ)
∂φ

δφ

]
=

∫
dtdD−1x δφ

[
φ̈+

∂V (φ)
∂φ

]
∴

δS[φ]
δφ

= φ̈+
∂V (φ)
∂φ

= 0

⇒ φ̈ = −∂V (φ)
∂φ

b In the units where ~ and c are dimensionless, our action is dimension-
less. Therefore the integral ∫

dtdD−1x φn

is also dimensionless.
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IIIA4.1
Let’s consider the semiclassical interpretation of a charged particle as de-
scribed by a complex scalar field ψ, with Lagrangian

L =
1
2
(
|∇ψ|2 +m2|ψ|2

)
(1)

a Use the semiclassical expansion in ~ defined by

∇ → ~∂ + iqA, ψ → √
ρe−iS/~

Find the Lagrangian in terms of ρ and S (and the background field
A), order-by-order in ~ (in this case, just ~0 and ~2).

b Take the semiclassical limit by dropping the ~2 term in L, to find

L→ ρ
1
2

[
(−∂S + qA)2 +m2

]
Vary with respect to S and ρ to find the equations of motion. Defining

p ≡ −∂S

show that these field equations can be interpreted as the mass-shell
condition and current conservation. Show that A couples to this cur-
rent by varying L with respect to A.

a Using this replacement, we can rewrite (1) as:

L =
1
2

(∣∣∣(~∂ + iqA)(
√
ρe−iS/~)

∣∣∣2 +m2
∣∣∣√ρe−iS/~

∣∣∣2)
=

1
2

(∣∣∣(~∂ + iqA)(
√
ρe−iS/~)

∣∣∣2 +m2ρ

)
=

1
2

(∣∣∣∣[ ~∂ρ
2
√
ρ

+ i
√
ρ(qA− ∂S)

]
e−iS/~

∣∣∣∣2 +m2ρ

)

=
1
2

(
~2

4ρ
(∂ρ)2 + ρ(qA− ∂S)2 +m2ρ

)
L =

ρ

2

(
1
4

(
∂ρ

ρ

)2

~2 +
[
(qA− ∂S)2 +m2

]
~0

)
. (2)
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b Now, if we drop the terms in (2) of order ~2 clearly we have

L =
ρ

2
[
(−∂S + qA)2 +m2

]
. (3)

To get the equations of motion, we need to solve the Euler-Lagrange
equations:

∂L

∂ρ
− ∂

∂L

∂(∂ρ)
= 0,

∂L

∂S
− ∂

∂L

∂(∂S)
= 0.

We see that (3) has no ∂ρ term and also no S term. Therefore we
can neglect the partial derivatives with respect to these variables. The
other terms become:

∂L

∂ρ
=

1
2
[
(−∂S + qA)2 +m2

]
= 0

⇒ (−∂S + qA)2 +m2 = 0 (4)

−∂ ∂L

∂(∂S)
= ∂ (ρ [−∂S + qA]) = 0

⇒ ∂ (−ρ∂S + qρA) = 0. (5)

Now, if we make the substitution for −∂S as stated in the problem,
we see (4) becomes

(p+ qA)2 +m2 = 0 (6)

which is exactly the mass shell condition, where the total momentum
includes terms from the gauge field. Similarly, plugging into (5) gives

∂ (ρp+ qρA) = ∂J = 0 (7)

or that the current (again including terms due to the gauge field) is a
conserved quantity. For the A coupling we have

∂L

∂A
= qρ (p+ qA) = qJ = 0. (8)

IIIA4.3
By plugging in the appropriate expressions in terms of Aa (and repeatedly
integrating by parts), show that all of the above expressions for the electro-
magnetism action can be written as

SA = −
∫
dx

1
4e2

[A ·2A+ (∂ ·A)2]
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If we start from the expression in the book:

SA =
∫
dx

1
8e2

F abFab +AaJa

where Jb = 1
2e2∂aF

ab is the current density and expand the field tensor we
have

SA =
∫
dx

1
8e2

(
∂aAb − ∂bAa

)
(∂aAb − ∂bAa) +

1
2e2

∫
dx Aa∂α (∂αAa − ∂aAα)

=
∫
dx

1
8e2

(
∂aAb∂aAb − ∂aAb∂bAa − ∂bAa∂aAb + ∂bAa∂bAb

)
+

1
2e2

∫
dx Aa∂α (∂αAa − ∂aAα)

=
1

4e2

∫
dx

[
(∂aAb)(∂aAb)− (∂aAb)(∂bAa) + 2 {Aa∂α (∂αAa − ∂aAα)}

]
=

1
4e2

∫
dx

[
−A ·2A− (∂aAb)(∂bAa) + 2A ·2A− 2Aa∂α∂aAα

]
=

1
4e2

∫
dx

[
A ·2A− (∂aAb)(∂bAa)− 2Aa∂α∂aAα

]
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