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IITA3.1
Consider the action

1.
S[¢] = /dthlx [—2¢>2+V(¢)]
for potential V(¢) (a function, not a functional).

a Find the field equations.

b Assume V(¢) = A¢" for some positive integer n and constant, dimen-
sitonless A, in units h = ¢ = 1. Use dimensional analysis to relate n and
D (of course, also a positive integer), and list all paired possibilities of
(n, D).

a To find the field equations, we simply need to set the variation of the
action to zero:

5S[g] =0 = ¢ (/ dtdP 'z [—;ﬁ + V(qS)D
_ / dtdP 1z [—¢35¢+5V(¢)]
— / dtdP ' [495¢+ 6V(¢)5¢]
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b In the units where A and ¢ are dimensionless, our action is dimension-
less. Therefore the integral

/ dtdP 1z ¢

is also dimensionless.



I11ITA4.1

Let’s consider the semiclassical interpretation of a charged particle as de-
scribed by a complex scalar field v, with Lagrangian

L= (IV6P +m2uP) 1)

a Use the semiclassical expansion in A defined by

V — hd +igA, ¢ — /pe /"

Find the Lagrangian in terms of p and S (and the background field

A), order-by-order

in 7 (in this case, just A° and h?).

b Take the semiclassical limit by dropping the i? term in L, to find

1
L— Py [(—35 +qA)? +m?

Vary with respect to S and p to find the equations of motion. Defining

p=-08

show that these field equations can be interpreted as the mass-shell
condition and current conservation. Show that A couples to this cur-
rent by varying L with respect to A.

a Using this replacement, we can rewrite (1) as:
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b Now, if we drop the terms in (2) of order #? clearly we have

L= g (=05 + qA)? +m?] . (3)
To get the equations of motion, we need to solve the Euler-Lagrange
equations:
oL oL oL oL
— —0=—7~=0, ——-0=—7=5==0
dp d0(0p) © 9S8 0(095)

We see that (3) has no dp term and also no S term. Therefore we
can neglect the partial derivatives with respect to these variables. The
other terms become:

gﬁ = % [(—0S + qA)* + m*] =0
= (-0S+qA)?+m?=0 (4)
09k ([0S +q4]) =0
d(0S)
= 0(—pdS+qpA)=0. (5)

Now, if we make the substitution for —95 as stated in the problem,
we see (4) becomes
(p+qA)? +m?* =0 (6)

which is exactly the mass shell condition, where the total momentum
includes terms from the gauge field. Similarly, plugging into (5) gives

d(pp+4qpA) =0J =0 (7)

or that the current (again including terms due to the gauge field) is a
conserved quantity. For the A coupling we have

oL
— = A)=qJ =0. 3
54 = PP t+ad)=q (8)
I1ITA4.3

By plugging in the appropriate expressions in terms of A, (and repeatedly
integrating by parts), show that all of the above expressions for the electro-
magnetism action can be written as

1 2
SA——/dxM[A-DA+(8-A)]



where Jb =

If we start from the expression in the book:

have

Sa

[
e

1
Sy = /dm @F“bFab + A%,

ﬁ@aF“b is the current density and expand the field tensor we

(040 — 9P 4°) (Dudy — By AL) + 212 / dz A0 (D Ay — D Ay)

8“Ab8 Ay — AL, A, — 8P A0, Ay + 8bA“8bAb>

+272 /dx A (90 Ay — DuAa)

1
= 462 /dx
= 462 /dl’
= 12 /dw

(99AY) (8a Ap) — (69A1)(DyAg) + 2 {AD* (DnAg — 5‘aAa)}]
~ A OA— (8°A%)(9yA,) + 24 - OA — 2AaaaaaAa}

A-OA — (9°AY) (3pAq) — 2A“8“6aAa]



