## IIIA3.1

Consider the action

$$
S[\phi]=\int d t d^{D-1} x\left[-\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right]
$$

for potential $V(\phi)$ (a function, not a functional).
a Find the field equations.
b Assume $V(\phi)=\lambda \phi^{n}$ for some positive integer $n$ and constant, dimensionless $\lambda$, in units $\hbar=c=1$. Use dimensional analysis to relate $n$ and $D$ (of course, also a positive integer), and list all paired possibilities of ( $n, D$ ).
a To find the field equations, we simply need to set the variation of the action to zero:

$$
\begin{aligned}
\delta S[\phi]=0 & =\delta\left(\int d t d^{D-1} x\left[-\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right]\right) \\
& =\int d t d^{D-1} x[-\dot{\phi} \delta \dot{\phi}+\delta V(\phi)] \\
& =\int d t d^{D-1} x\left[\ddot{\phi} \delta \phi+\frac{\partial V(\phi)}{\partial \phi} \delta \phi\right] \\
& =\int d t d^{D-1} x \delta \phi\left[\ddot{\phi}+\frac{\partial V(\phi)}{\partial \phi}\right] \\
& \therefore \frac{\delta S[\phi]}{\delta \phi}=\ddot{\phi}+\frac{\partial V(\phi)}{\partial \phi}=0 \\
& \Rightarrow \ddot{\phi}=-\frac{\partial V(\phi)}{\partial \phi}
\end{aligned}
$$

b In the units where $\hbar$ and $c$ are dimensionless, our action is dimensionless. Therefore the integral

$$
\int d t d^{D-1} x \phi^{n}
$$

is also dimensionless.

## IIIA4.1

Let's consider the semiclassical interpretation of a charged particle as described by a complex scalar field $\psi$, with Lagrangian

$$
\begin{equation*}
L=\frac{1}{2}\left(|\nabla \psi|^{2}+m^{2}|\psi|^{2}\right) \tag{1}
\end{equation*}
$$

a Use the semiclassical expansion in $\hbar$ defined by

$$
\nabla \rightarrow \hbar \partial+i q A, \quad \psi \rightarrow \sqrt{\rho} e^{-i S / \hbar}
$$

Find the Lagrangian in terms of $\rho$ and $S$ (and the background field $A$ ), order-by-order in $\hbar$ (in this case, just $\hbar^{0}$ and $\hbar^{2}$ ).
b Take the semiclassical limit by dropping the $\hbar^{2}$ term in $L$, to find

$$
L \rightarrow \rho \frac{1}{2}\left[(-\partial S+q A)^{2}+m^{2}\right]
$$

Vary with respect to $S$ and $\rho$ to find the equations of motion. Defining

$$
p \equiv-\partial S
$$

show that these field equations can be interpreted as the mass-shell condition and current conservation. Show that $A$ couples to this current by varying $L$ with respect to $A$.
a Using this replacement, we can rewrite (1) as:

$$
\begin{align*}
L & =\frac{1}{2}\left(\left|(\hbar \partial+i q A)\left(\sqrt{\rho} e^{-i S / \hbar}\right)\right|^{2}+m^{2}\left|\sqrt{\rho} e^{-i S / \hbar}\right|^{2}\right) \\
& =\frac{1}{2}\left(\left|(\hbar \partial+i q A)\left(\sqrt{\rho} e^{-i S / \hbar}\right)\right|^{2}+m^{2} \rho\right) \\
& =\frac{1}{2}\left(\left|\left[\frac{\hbar \partial \rho}{2 \sqrt{\rho}}+i \sqrt{\rho}(q A-\partial S)\right] e^{-i S / \hbar}\right|^{2}+m^{2} \rho\right) \\
& =\frac{1}{2}\left(\frac{\hbar^{2}}{4 \rho}(\partial \rho)^{2}+\rho(q A-\partial S)^{2}+m^{2} \rho\right) \\
L & =\frac{\rho}{2}\left(\frac{1}{4}\left(\frac{\partial \rho}{\rho}\right)^{2} \hbar^{2}+\left[(q A-\partial S)^{2}+m^{2}\right] \hbar^{0}\right) \tag{2}
\end{align*}
$$

b Now, if we drop the terms in (2) of order $\hbar^{2}$ clearly we have

$$
\begin{equation*}
L=\frac{\rho}{2}\left[(-\partial S+q A)^{2}+m^{2}\right] . \tag{3}
\end{equation*}
$$

To get the equations of motion, we need to solve the Euler-Lagrange equations:

$$
\frac{\partial L}{\partial \rho}-\partial \frac{\partial L}{\partial(\partial \rho)}=0, \quad \frac{\partial L}{\partial S}-\partial \frac{\partial L}{\partial(\partial S)}=0 .
$$

We see that (3) has no $\partial \rho$ term and also no $S$ term. Therefore we can neglect the partial derivatives with respect to these variables. The other terms become:

$$
\begin{align*}
\frac{\partial L}{\partial \rho} & =\frac{1}{2}\left[(-\partial S+q A)^{2}+m^{2}\right]=0 \\
& \Rightarrow(-\partial S+q A)^{2}+m^{2}=0  \tag{4}\\
-\partial \frac{\partial L}{\partial(\partial S)} & =\partial(\rho[-\partial S+q A])=0 \\
& \Rightarrow \partial(-\rho \partial S+q \rho A)=0 . \tag{5}
\end{align*}
$$

Now, if we make the substitution for $-\partial S$ as stated in the problem, we see (4) becomes

$$
\begin{equation*}
(p+q A)^{2}+m^{2}=0 \tag{6}
\end{equation*}
$$

which is exactly the mass shell condition, where the total momentum includes terms from the gauge field. Similarly, plugging into (5) gives

$$
\begin{equation*}
\partial(\rho p+q \rho A)=\partial J=0 \tag{7}
\end{equation*}
$$

or that the current (again including terms due to the gauge field) is a conserved quantity. For the $A$ coupling we have

$$
\begin{equation*}
\frac{\partial L}{\partial A}=q \rho(p+q A)=q J=0 . \tag{8}
\end{equation*}
$$

## IIIA4.3

By plugging in the appropriate expressions in terms of $A_{a}$ (and repeatedly integrating by parts), show that all of the above expressions for the electromagnetism action can be written as

$$
S_{A}=-\int d x \frac{1}{4 e^{2}}\left[A \cdot \square A+(\partial \cdot A)^{2}\right]
$$

If we start from the expression in the book:

$$
S_{A}=\int d x \frac{1}{8 e^{2}} F^{a b} F_{a b}+A^{a} J_{a}
$$

where $J^{b}=\frac{1}{2 e^{2}} \partial_{a} F^{a b}$ is the current density and expand the field tensor we have

$$
\begin{aligned}
S_{A}= & \int d x \frac{1}{8 e^{2}}\left(\partial^{a} A^{b}-\partial^{b} A^{a}\right)\left(\partial_{a} A_{b}-\partial_{b} A_{a}\right)+\frac{1}{2 e^{2}} \int d x A^{a} \partial^{\alpha}\left(\partial_{\alpha} A_{a}-\partial_{a} A_{\alpha}\right) \\
= & \int d x \frac{1}{8 e^{2}}\left(\partial^{a} A^{b} \partial_{a} A_{b}-\partial^{a} A^{b} \partial_{b} A_{a}-\partial^{b} A^{a} \partial_{a} A_{b}+\partial^{b} A^{a} \partial_{b} A_{b}\right) \\
& +\frac{1}{2 e^{2}} \int d x A^{a} \partial^{\alpha}\left(\partial_{\alpha} A_{a}-\partial_{a} A_{\alpha}\right) \\
= & \frac{1}{4 e^{2}} \int d x\left[\left(\partial^{a} A^{b}\right)\left(\partial_{a} A_{b}\right)-\left(\partial^{a} A^{b}\right)\left(\partial_{b} A_{a}\right)+2\left\{A^{a} \partial^{\alpha}\left(\partial_{\alpha} A_{a}-\partial_{a} A_{\alpha}\right)\right\}\right] \\
= & \frac{1}{4 e^{2}} \int d x\left[-A \cdot \square A-\left(\partial^{a} A^{b}\right)\left(\partial_{b} A_{a}\right)+2 A \cdot \square A-2 A^{a} \partial^{\alpha} \partial_{a} A_{\alpha}\right] \\
= & \frac{1}{4 e^{2}} \int d x\left[A \cdot \square A-\left(\partial^{a} A^{b}\right)\left(\partial_{b} A_{a}\right)-2 A^{a} \partial^{\alpha} \partial_{a} A_{\alpha}\right]
\end{aligned}
$$

