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ABSTRACT

We investigate the prospects for characterizing extrasolar giant planets by measuring planetary oblateness
from transit photometry and inferring planetary rotational periods. The rotation rates of planets in the solar
system vary widely, reflecting the planets’ diverse formational and evolutionary histories. Ameasured oblate-
ness, assumed composition, and equation of state yields a rotation rate from the Darwin-Radau relation. The
light curve of a transiting oblate planet should differ significantly from that of a spherical one with the same
cross-sectional area under identical stellar and orbital conditions. However, if the stellar and orbital parame-
ters are not known a priori, fitting for them allows changes in the stellar radius, planetary radius, impact
parameter, and stellar limb-darkening parameters to mimic the transit signature of an oblate planet, dimin-
ishing the oblateness signature. Thus, even if HD 209458b had an oblateness of 0.1 instead of our predicted
0.003, it would introduce a detectable departure from a model spherical light curve at the level of only one
part in 105. Planets with nonzero obliquity break this degeneracy because their ingress light curve is asymmet-
ric relative to that from egress and their best-case detectability is of order 10�4. However, the measured rota-
tion rate for these objects is nonunique due to degeneracy between obliquity and oblateness and the
unknown component of obliquity along the line of sight. Detectability of oblateness is maximized for planets
transiting near an impact parameter of 0.7, regardless of obliquity. Future measurements of oblateness will
be challenging because the signal is near the photometric limits of current hardware and inherent stellar noise
levels.

Subject headings: occultations — planetary systems — planets and satellites: general —
planets and satellites: individual (HD 209458b)

1. INTRODUCTION

Discovery of the transiting extrasolar planet HD 209458b
(Charbonneau et al. 2000; Henry et al. 2000) has provided
one mechanism for researchers to move beyond the dis-
covery and into the characterization of extrasolar planets.
Precise Hubble Space Telescope (HST) measurements of
HD 209458b’s transit light curve revealed the radius
ð1:347� 0:060ÞRJup and orbital inclination (86=68� 0=14)
from impact parameter 0.508 of the planet, which, along
with radial velocity measurements, unambiguously deter-
mine the planet’s mass (0:69� 0:05 MJup) and density (0.35
g cm� 3; Brown et al. 2001). Of the over 100 extrasolar plan-
ets discovered so far, this large radius makes HD 209458b
the only one empirically determined to be a gas giant.

Knowledge of a planet’s cross-sectional area provides a
zeroth order determination of its geometry, and the HST
photometry is precise enough to constrain the shape of HD
209458b to be rounded to first order. While a planet transits
the limb of its star, the rate of decrease in apparent stellar
brightness is related to the rate of increase in stellar surface
area covered by the planet in the same time interval. We
investigate whether it is possible to use this information to
determine the shape of the planet to second order.

Rotation causes a planet’s shape to be flattened or oblate
by reducing the effective gravitational acceleration at the
equator (as a result of centrifugal acceleration) and by redis-
tributing mass within the planet (which changes the gravity
field). Oblateness, f, is defined as a function of the equatorial
radius (Req) and the polar radius (Rp),

f � Req � Rp

Req
: ð1Þ

For Jupiter and Saturn, high rotation rates and low den-
sities result in highly oblate planets: fJup ¼ 0:06487 and
fSat ¼ 0:09796, compared to f� ¼ 0:00335.

An earlier investigation of the detectability of oblateness
in transiting extrasolar planets was published by Seager &
Hui (2002). Our work represents an improvement over
Seager & Hui (2002) in the use of model fits to compare
oblate and spherical planet transits, the use of the Darwin-
Radau relation to associate oblateness and rotation, and
a thorough investigation of the degeneracies involved in
fitting a transit light curve.

In this paper, we investigate the reasons for measuring
planetary rotation rates, the relationship between rotation
rate and oblateness for extrasolar giant planets, the effect
of oblateness on transit light curves, and the prospects
for determining the oblateness of a planet from transit
photometry.

2. EXOPLANETS AND ROTATION

While knowledge of a planet’s mass and radius provides
information regarding composition and thermal evolution,
measurements of rotation and obliquity promise to con-
strain the planet’s formation, tidal evolution, and tidal dissi-
pation. What these data might reveal about a planet
depends on whether the planet is unaffected by stellar tides,
slightly affected by tides, or heavily influenced by tides.

2.1. Tidally Unaffected

The present-day rotation rate of a planet is the product of
both the planet’s formation and its subsequent evolution.
Planets at sufficiently large distances from their parent stars
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are not significantly affected by stellar tides; thus, these
objects rotate with their primordial rates altered by plane-
tary contraction and gravitational interactions between the
planet, its satellites, and other planets. To the degree that a
planet’s rotational angular momentum is primordial, it may
be diagnostic of the planet’s formation. Planets formed in
circular orbits from a protoplanetary disk inherit net pro-
grade angular momentum from the accreting gas, resulting
in rapid prograde rotation (Lissauer 1995). Planets that
form in eccentric orbits receive less prograde specific angu-
lar momentum than planets in circular orbits, and as a
result, they rotate at rates varying from slow retrograde up
to prograde rotations similar to those of circularly accreted
planets (Lissauer et al. 1997). Thus, comparing the current-
day rotation rates for planets in circular and eccentric orbits
may reveal whether extrasolar planets formed in eccentric
orbits or acquired their eccentricity later from dynamical
interactions with other planets or a disk.

The orientation of a planet’s rotational axis relative to the
vector perpendicular to the orbital plane, the planet’s obliq-
uity or axial tilt (t), can also provide insight into the planet’s
formation mechanism. Jupiter’s low obliquity (3=12) has
been suggested as evidence that its formation was domi-
nated by orderly gas flow rather than the stochastic impacts
of accreting planetesimals (Lissauer 1993). Tidally une-
volved extrasolar planets determined to have high obliqui-
ties could be inferred either to have formed differently than
Jupiter or to have undergone large obliquity changes, as has
been suggested for Saturn (t ¼ 26=73; Ward & Hamilton
2002).

2.2. Tidally Influenced

Tidal interaction between planets and their parent stars
slows the rotation of those planets with close-in orbits
(Guillot et al. 1996). This tidal braking continues until the
net tidal torque on the planet becomes zero. Whether a
planet reaches this end state depends on its age, radius,
semimajor axis, and the planet-to-star mass ratio.

The rate of tidal braking also depends on the parameter
Q, which represents the internal tidal dissipation within the
planet. The value of Q is poorly constrained even for the
planets in our own solar system (Goldreich & Soter 1966).
Nevertheless, measurements of extrasolar planet rotation
rates could constrain Q for these planets based on the
degree of tidal evolution that has taken place (Seager &
Hui 2002).

Tidal braking for objects with nonzero obliquity can,
somewhat counterintuitively, act to increase an object’s
obliquity. Tidal torques reduce the component of a planet’s
angular momentum perpendicular to the orbital plane faster
than they reduce the component of the planet’s angular
momentum in the orbital plane (Peale 1999). This occurs
because at solstice the planet’s induced tidal bulge is not car-
ried away from the planet’s orbital plane by planetary rota-
tion. Therefore, for large fractions of the year, stellar tidal
torques do not act to right the planet’s spin axis, while tor-
ques that reduce the angular momentum perpendicular to
the orbital plane act year-round. As a result, planets that
have undergone partial tidal evolution can exhibit tempora-
rily increased obliquity as the planet’s rotation rate de-
creases. Eventually, such a planet reaches maximum obliq-
uity and thereafter approaches synchronous rotation and
zero obliquity simultaneously. Planets undergoing tidal evo-

lutionmay be expected to have higher obliquities on average
than planets retaining their primordial obliquity.

2.3. Tidally Dominated

The end state of tidal evolution for planets in circular
orbits is a 1:1 spin-orbit synchronization between the plan-
et’s rotation and its orbital period along with zero obliquity.
However, most of the extrasolar planets discovered thus far
are on eccentric orbits (Marcy, Cochran, & Mayor 2000).
(We sometimes shorten ‘‘ planets on eccentric orbits ’’ to
‘‘ eccentric planets,’’ even though the eccentricity is not
inherent to the planet.) Thus, these eccentric planets will
never reach 1:1 spin-orbit coupling as a result of tidal evolu-
tion because the tidal torque (eq. [2]) on the planet from
its star is much stronger (due to the r�6 dependence) near
periapsis.

The tidal torque between a planet and star is given by
(Murray &Dermott 2000)

�p�� ¼ � 3

2

k2 GM2� R5

Qr6
sgn ð�� _��Þ ; ð2Þ

where k2 is the planet’s Love number, R its radius, � its
rotation rate (in radians per second), _�� the instantaneous
orbital angular velocity (also in radians per second), and r
the instantaneous distance between the planet and star. The
function sgn ðxÞ is equal to 1 if x is positive and �1 if x is
negative. The magnitude of the stellar perturbation is pro-
portional to GM2�, the product of the stellar mass (M�)
squared and the gravitational constant (G). The planet is
spun down by tidal torques if its rotation is faster than its
orbital motion (� > _��), and it is spun up if its rotation is
slower than the orbital motion (� < _��).

If an eccentric planet were in a 1:1 spin-orbit state, it
would be spun up by the star when its orbital angular veloc-
ity is greater than average near periapsis, and it would be
spun down when the orbital angular velocity is low near
apoapsis. The total positive tidal torque induced while the
planet is in close will exceed the negative torque while it is
far away, despite the shorter time spent near periapsis.
Thus, to be in rotational equilibrium with respect to stellar
tides, an eccentric, fluid planet must rotate faster than its
mean motion.

The Earth’s moon avoids this fate because it has a non-
zero component of its quadrupole moment in its orbital
plane. The torque that the Earth exerts on this permanent
bulge exceeds the net tidal torque imparted on the moon
due to its eccentric orbit, keeping the moon in synchronous
rotation (Murray & Dermott 2000). Fluid planets, however,
have no permanent quadrupole moment and thus have no
restoring torque competing with the stellar tidal torques
(Greenberg &Weidenschilling 1984). Tidal evolution ceases
for these bodies when the net torque per orbit is zero, which
can be achieved only by supersynchronous rotation.

The precise rotation rate necessary to balance the tidal
torques over the eccentric orbit depends on how Q varies
with the tidal forcing frequency (the difference between the
rotation rate and instantaneous orbital angular velocity,
�p � _��p). Conventionally, Q has been assumed to be either
independent of the forcing frequency or inversely propor-
tional to it (Goldreich & Peale 1968). The resulting equili-
brium spin-orbit ratios as a function of eccentricity for each
of these cases are plotted in Figure 1.
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Probably both of these assumptions for the behavior ofQ
are too simple. In particular, if the behavior of Q changes
under a varying tidal forcing frequency (�p � _��p is a func-
tion of time), then the tidal equilibrium rotation rate would
differ significantly from that plotted in Figure 1. Measure-
ment of rotational rates of eccentric extrasolar planets in
tidal equilibrium could, in principle, either differentiate
between these two models or suggest other frequency
dependences, shedding light on the yet unknown mecha-
nism for tidal dissipation within giant planets.

3. ROTATION AND OBLATENESS

Rotation affects the shape of a planet via two mecha-
nisms. Gravity must provide centripetal acceleration—thus
the higher velocity at the equator causes the planet to bulge
by transfer of mass from polar regions—and, secondarily,

the redistributed mass alters the planet’s gravitational field
and attracts even more mass toward the equatorial plane.
The ratio of the required centripetal acceleration at the
equator to the gravitational acceleration, q, represents the
relative importance of the centripetal acceleration term as

q ¼
�2R3

eq

GMp
; ð3Þ

where � is the rotation rate in radians per second,Mp is the
mass of the planet, and Req is the planet’s equatorial radius
(Murray &Dermott 2000).

We use the Darwin-Radau relation to relate rotation and
oblateness accounting for the gravitational pull of the
shifted mass (Murray &Dermott 2000),

C � C

MpR2
eq

¼ 2

3
1� 2

5

5

2

q

f
� 1

� �1=2
" #

; ð4Þ

where C is the planet’s moment of inertia around the rota-
tional axis and C is shorthand for CM�1

p R�2
eq . The Darwin-

Radau relation is exact for uniform density bodies (C ¼ 0:4)
but is only an approximation for gas giant planets
(C � 0:25; Hubbard 1984).

By combining equations (3) and (4), we arrive at a rela-
tion for rotation rate,�, as a function of oblateness, f,

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fGMp

R3
eq

5

2
1� 3

2
C

� �2

þ 2

5

" #vuut : ð5Þ

For our solar system, the Darwin-Radau relation yields
rotation periods accurate to within a few percent (Table 1)
using model-derived moments of inertia from Hubbard &
Marley (1989).

Extending the Darwin-Radau relation to extrasolar plan-
ets requires estimation of the appropriate moment of inertia
coefficients, C, for those planets. For transiting planets
whose masses and radii are known, we use a self-consistent
hydrodynamic model of the planet and assumptions about
its composition to estimateC following Fortney &Hubbard
(2003). To first order, C is independent of oblateness due to
similar symmetry around the rotational axis so our hydro-
dynamic model does not need to explicitly incorporate
oblateness. The Darwin-Radau relation and spherically
symmetric hydrodynamic models provide sufficient preci-
sion for the current work; however, to estimate the oblate-
ness as a function of rotation more robustly, a two-
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Fig. 1.—Spin to orbital mean motion ratios for tidally evolved fluid
planets in equilibrium. Solid line: Ratio as calculated under the assumption
of a frequency-independent tidal dissipation factor Q. Dashed line: Calcu-
lated assuming Q / frequency�1. Under these assumptions, extremely
eccentric planet HD 80606b (e ¼ 0:93) would, if allowed to come to tidal
equilibrium, rotate over 90 times faster than its mean orbital motion!

TABLE 1

Darwin-Radau in the Solar System

Planet f C

Calculated Period

(hr)

Actual Period

(hr)

Error

(%)

Jupiter........ 0.06487 0.26401a 10.1609 9.92425 2.38

Saturn........ 0.09796 0.22037a 10.8817 10.6562 2.12

Uranus....... 0.02293 0.2268 a 16.6459 17.24 3.45

Neptune..... 0.01708 0.23 b 16.8656 16.11 4.69

Earth ......... 0.00335 0.3308 23.8808 23.9342 0.223

Note.—Comparison of calculated rotation rates from the Darwin-Radau approximation (eq.
[4]) to actual rotation rates for selected planets in our solar system.

a Hubbard &Marley 1989.
b Assumed.
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dimensional interior model involving both rotational and
gravitational forces should be used (e.g., Hubbard &
Marley 1989).

Under the spherically symmetric assumption, we calcu-
late the C of Jupiter to be 0.277 with no core and 0.253 with
a 20 M� core, and we calculate the C of Saturn to be 0.225
with a core. (We are unable to calculate the interior struc-
ture of Saturn without a core due to deficiencies in our
knowledge of the equation of state.) Using these moments
of inertia instead of the measured ones listed in Table 1
yields similar rotation errors of a few percent. We apply our
model to generic 1:0 RJup extrasolar giant planets of varying
masses and architectures in Figure 2.

For HD 209458b, our models calculateC to be 0.218 with
no core and 0.185 with a 20 M� core. To estimate the
oblateness of HD 209458b assuming synchronous rotation,
we rearrange equation (5) to solve for f,

f ¼ �2 R3

G Mp

5

2
1� 3

2
C

� �2

þ 2

5

" #�1

; ð6Þ

and then use the synchronous rotation rate � ¼ 2:066�
10�5 radians s�1 to obtain f ¼ 0:00285 with no core and
f ¼ 0:00256 with a 20 M� core. These results imply an
equator-to-pole radius difference of �200 km, which,
although small, is still comparable to the atmospheric scale
height at 1 bar,�700 km.

Showman & Guillot (2002) suggest that zonal winds on
HD 209458b may operate at speeds up to �2 km s�1 in the
prograde direction, and Showman &Guillot (2002) go on to
show that these winds might then spin up the planet’s inte-
rior, possibly to commensurate speeds of several hundred m
s�1 up to a few km s�1 (though the model of Showman &
Guillot 2002 does not treat the outer layers and interior self-

consistently). This speed is a nonnegligible fraction of the
orbital velocity around the planet at the surface, 30 km s�1,
and is also comparable to the planet’s rotational velocity at
the equator, 2.0 km s�1. As such, if radiatively driven winds
prove to be important on HD 209458b, they would affect
the planet’s oblateness. We use the rotation rate implied by
the Showman & Guillot (2002) calculations to provide an
upper limit for the expected oblateness of HD 209458b. If
the entire planet was spinning at its synchronous rate plus
2 km s�1 at the cloud tops, the rotational period would be
halved to 1.8 days, with a corresponding oblateness of
0.0109 and 0.0098 for the no-core and core models,
respectively.

During revision of this paper, Konacki et al. (2003)
announced the discovery of a second transiting planet. This
new planet, OGLE-TR-56b, has a radius of 1:3RJup, a mass
of 0:9RJup, and an extremely short orbital period of 1.2 days.
Although these parameters are less constrained than those
for HD 209458b, we proceed to calculate that the oblateness
of this new object should be 0.017 with no core and 0.016
with a 20 M� core, forC of 0.228 and 0.204, respectively.

Current ground-based transit searches detect low-
luminosity objects such as brown dwarfs and low-mass stars
in addition to planets. However, the high surface gravity for
brown dwarfs and lower main-sequence stars leads to low
values of q and very small oblatenesses for those objects.
For a 13MJup brown dwarf with 1:0RJup in an HD 209458b–
like 3.52 day orbit, the expected oblateness is only 0.00007.
Measuring oblateness will therefore be practical only
for transiting planets and not for other transiting low-
luminosity bodies.

We also note that the measurement of oblateness along
with an independent measurement of a planet’s rotation
rate � would determine the planet’s moment of inertia. This
would provide a direct constraint on the planet’s internal
structure, possibly allowing inferences regarding the
planet’s bulk helium fraction and/or the presence of a
rocky core.

4. OBLATENESS AND TRANSIT LIGHT CURVES

4.1. Transit Anatomy

Brown et al. (2001, hereafter BCGNB) investigated the
detailed structure of a transit light curve while studying the
HST light curve of the HD 209458b transit. Figure 3 relates
transit events to corresponding features in the light curve,
modeled after BCGNB’s Figure 4. The flux from the star
begins to drop at the onset of transit, known as the first con-
tact. As the planet’s disk moves onto the star, the flux drops
further until at second contact, the entire planet disk blocks
starlight. Third contact is the equivalent of second contact
during egress, and fourth contact marks the end of the
transit. Due to stellar limb darkening, the planet blocks a
greater fraction of the star’s light at mid-transit than at the
second and third contacts, leading to curvature at the bot-
tom of the transit light curve.

For a given stellar mass (M�), the total transit duration, l,
is a function of the transit chord length and the orbital
velocity. We assume a circular orbit that fixes the planet’s
orbital velocity. The chord length depends on the stellar
radius,R�, and the impact parameter, b. The impact param-
eter relates to i, the inclination of the orbital plane relative
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Fig. 2.—Moment of inertia coefficient, C, as a function of planet mass
for hypothetical generic 1:0RJup extrasolar giant planets. Extrasolar giant
planets may or may not possess rocky cores depending on their formation
mechanism, so we plot C for both no core (upper curve) and an assumed
20 M� core (lower curve).
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to the plane of the sky, as

b ¼ a cos ðiÞj j
R�

; ð7Þ

where a is the semimajor axis of the planet’s orbit.
The duration of ingress and egress, w, is the time between

first and second contact and is a function of Rp, R�, and b
(or i). Transits with b � 0 have smaller w than transits with
higher b. For transits with b � 1, called grazing transits, w is
undefined because there is no second or third contact.

The total transit depth, d, fixes the ratio Rp=R�, where Rp

is the radius of the planet (except in the case of grazing
transits).

The magnitude of the curvature at the bottom of the
transit light curve, �, determines the stellar limb darkening.
We use limb-darkening parameters u1 and u2, or c1 and c2,
which we define mathematically in x 4.2.

4.2. Methods

We calculate theoretical transit light curves by comparing
the amount of stellar flux blocked by the planet to the total
stellar flux. The relative emission intensity across the disk of
the star is greatest in the center and lowest along the edges
as a result of limb darkening. Many parameterizations of
limb darkening exist (see Claret 2000); however, we use the

one proposed by BCGNB because it is the most appropriate
for planetary transits.

The emission intensity at a given point on the stellar disk,
I, is parameterized as a function of l ¼ cos ½sin�1ð�=R�Þ�,
where � is the projected (apparent) distance between the
center of the star and the point in question. BCGNB defined
a set of two limb-darkening coefficients, which we call c1
and c2, that are equivalent to

IðlÞ
Ið1Þ ¼ 1� c1

ð1� lÞð2� lÞ
2

þ c2
ð1� lÞl

2
: ð8Þ

The advantage of this limb-darkening function is that c1
describes the magnitude of the darkening, while c2 is a cor-
rection for curvature. This makes the BCGNB coefficients
particularly useful for fitting transit observations because a
good fit to data can be achieved by fitting only for the c1
coefficient.

Our algorithm for calculating the light curve takes
advantage of the symmetry inherent in the problem: that
IðlÞ depends only on � and not on the angle around the
star’s center, h. We evaluate the apparent stellar flux at time
� , Fð�Þ, relative to the out-of-transit flux F0, by subtracting
the amount of stellar flux blocked by the planet from F0,

F0 ¼
Z R�

0

2�Ið�Þ d� ; ð9Þ

Fblocked ¼
Z R�

0

2�Ið�Þ xð�; �Þ d� ; ð10Þ

and

Fð�Þ ¼ F0 � Fblocked

F0
; ð11Þ

where xð�; �Þ is the fraction of a ring of radius � and width
d� covered by the planet at time � . In effect, we split the star
up into infinitesimally small rings and add up the fluxes in
equation (9), then we determine how much of each of these
rings is covered by the planet in equation (10). We calculate
the integrals numerically using Romberg’s method (Press et
al. 1992): xðr; tÞ is evaluated numerically as well. There is no
closed-form general analytical solution to the intersection
of an ellipse and a circle.

This algorithm is more efficient than the raster method
used by Hubbard et al. (2001) for planets treated as opaque
disks because the use of symmetry and Romberg integration
minimize the number of computations of the stellar
intensity, IðlÞ.

4.3. Results

To illustrate the effect oblateness has on a transit light
curve, we calculate the difference between the light curve of
an oblate, zero-obliquity planet and that of a spherical
planet with the same cross-sectional area. For familiarity,
we adopt the transit parameter values measured by BCGNB
for the HD 209458b transit: Rp ¼ 1:347RJup, R� ¼ 1:146
R	, and c1 ¼ 0:640. Plots of the oblate-spherical differential
as a function of impact parameter are shown in Figure 4.

For nearly central transits, an oblate planet encounters
first contact before, and second contact after, the equivalent
spherical planet. This situation causes the oblate planet’s
transit light curve initially to dip below that of the spherical
planet. However, near the time when the planet center is
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Fig. 3.—Anatomy of a transit after BCGNB
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covering the limb of the star, each planet blocks the same
apparent stellar area and the stellar flux difference is zero.
As the two hypothetical transits approach second contact,
this trend reverses and the spherical planet starts blocking
more light than the oblate one until the oblate planet nearly
catches up at second contact. Between second and third con-
tacts, the light curve differences are slightly nonzero because
the two planets cover areas of the star with differing
amounts of limb darkening. The light curves are symmetric
such that these effects repeat themselves in reverse upon
egress.

At high-impact parameters (nearly grazing planet tran-
sits), the opposite occurs. First contact for the oblate planet
occurs after that for the spherical planet because the point
of first contact on the planet is closer to the pole than to the
equator. In this scenario, the oblate planet’s transit flux
starts higher than, becomes equivalent to, and then drops
below that of the spherical planet before returning to near

zero for the times between second and third contact. In the
case of a grazing transit, this sequence is truncated because
there is no second or third contact.

The boundary between these two regions occurs when the
local oblate planet radius at the point of first contact is equal
to Rea, the radius of the equivalent spherical planet. For
planets that are small compared with the sizes of their stars
(Rp5R�) and that have low oblateness ( fd0:1), this tran-
sition occurs when � ¼ �=4 (from Fig. 3) and b ¼ 2�1=2 ¼
0:707. The flux difference between transits of oblate planets
and that for spherical planets, all else being equal, is at a
minimum at this point and deviates from zero because the
rate of change in stellar area covered is different for the two
planets. First, second, third, and fourth contacts all occur at
nearly the same time for each planet. However, if all else is
not equal, as is usually the case since the stellar parameters
are poorly constrained, then this result is misleading and
does not represent the detectability of planetary oblateness.
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Fig. 4.—Oversimplified model of the effect of oblateness on a transit light curve. We plot the differences between the light curve of an oblate planet and the
light curve of a spherical planet with the same cross-sectional area, Ff¼0:1ðtÞ � Ff¼0:0ðtÞ while holding all other transit parameters, R�, Rp, b, and c1 the same
and setting these values equal to those values measured by BCGNB for HD 209458b. Top panel: Light curve differential for impact parameters b ¼ 0:0 (solid
line), b ¼ 0:3 (dashed line), and b ¼ 0:6 (dot-dashed line). An oblate planet for b < 0:7 encounters first contact before and second contact after the equivalent
spherical planet, resulting in the initial negative turn for Ff¼0:1ðtÞ � Ff¼0:0ðtÞ and subsequent positive section of the curve for these impact parameters. Bottom
panel: Differential light curve for b ¼ 0:8 (solid line), b ¼ 0:9 (dashed line), and b ¼ 1:0 (dot-dashed line). For b > 0:7, under otherwise identical conditions, an
oblate planet first encounters the limb of the star after the equivalent spherical planet and last touches the limb later on ingress. For b ¼ 0:9, because
Rp > 0:1R�, there is no second contact; i.e., the transit is partial, so the flux differential does not return to near zero, even at mid-transit. Middle panel: Light
curve differential at the changeover point between these two regimes, where b ¼ 0:7.
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5. TRANSIT LIGHT CURVES AND EXOPLANETS

To test whether these flux differences are detectable,
we use a Levenberg-Marquardt curve-fitting algorithm
adapted from Press et al. (1992) to fit model transits to both
the HST HD 209458b light curve and hypothetical model-
generated light curves by minimizing �2. As a test, we fit
the HST HD 209458b transit light curve and obtain
R� ¼ 1:142 R	, Rp ¼ 1:343RJup, i ¼ 86=72 (b ¼ 0:504),
c1 ¼ 0:647, and c2 ¼ �0:065 with a reduced �2 of 1.05,
consistent with the values obtained by BCGNB.

In order for planetary oblateness to have a noticeable
effect on a transit light curve, it must be distinguishable from
the light curve of a spherical planet. For a spherical planet
transit model, the combination of transit parameters that
correspond to the light curve that best simulates the data
from an actual oblate planet transit become the measured
values, and these measured quantities may not be similar to
the actual values. Therefore, to consider the detectability of
planetary oblateness, we compare oblate planet transit light
curves to those of the best-fit spherical planet light curve

instead of to the light curve of a planet that differs from the
actual values only in the oblateness parameter (as we did in
x 4.3).

5.1. Zero Obliquity

We compare a model transit of an oblate planet ( f ¼ 0:1)
with zero obliquity, as is the case for a tidally evolved
planet, to the transit of the best-fit spherical planet in Fig-
ures 5 and 6. The oblate planet transit signature is muted in
each when compared to Figure 4 due to a degeneracy
between the fitted parameters R�, Rp, b, and the oblateness
f. This degeneracy is introduced by the unconstrained
nature of the problem; in essence, we are trying to solve for
five free parameters,R�,Rp, b, c1, and f, given just four con-
straints, d,w, l, and �, assuming (as BCGNB did) knowledge
of the stellar mass M�. Without assuming a value for M�,
absolute timescales for the problem vanish, yielding a simi-
lar conundrum of solving for Rp=R�, b, c1, and f given only
d, �, and w=l. The previous two sentences are intended to be
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Fig. 5.—Detectable difference between the light curve of an oblate ( f ¼ 0:1) planet and the best-fit spherical model, fitting for R�, Rp, b, and c1. Higher b
combined with larger values forR� andRp simulate the lengthened ingress and egress of an oblate planet, diminishing the difference between oblate and spher-
ical planets from Fig. 4 for planets with b < 0:7 (top panel: solid line, b ¼ 0:0; dashed line, b ¼ 0:3; dotted line, b ¼ 0:5). For planets near b ¼ 0:7, the length of
ingress and egress cannot be simulated by higher b, and as a result, the transit signal is highest for these planets (middle panel: solid line, b ¼ 0:6; dashed line,
b ¼ 0:7; dotted line, b ¼ 0:8). Above the critical value, b > 0:7, the oblate planet’s signal can be simulated by lowering b for the spherical planet fit, reducing the
detectability of oblateness (bottom panel: solid line, b ¼ 0:9; dashed line, b ¼ 1:0). It is very difficult to determine the oblateness for planets involved in grazing
transits (b � 1:0). The magnitude of the detectability difference is proportional to f to first order; hence, to estimate the detectability of a planet with arbitrary
oblateness, multiply the differences plotted here by f =0:1ð Þ R2
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simplifications, as at higher photometric precision, more
information about the conditions of the transit is available.
Hereafter, we assume knowledge of M�, though this analy-
sis also could have been done without this assumption or
with an assumed relation between M� and R�, as proposed
by Cody & Sasselov (2002). Changes inR�,Rp, and bmimic
the signal of an oblate planet by altering the ingress and
egress times while maintaining the total transit duration by
keeping the chord length constant.

For planets transiting at low-impact parameter (b < 0:7),
an oblate planet’s longer ingress and egress (higher w from
Fig. 3) are fitted better using a spherical model with a higher
impact parameter than actual, thus lengthening the time
between first and second contact. Since for a given star,
transits at higher impact parameter have shorter overall
duration, the best-fit spherical model has a larger R� than
the model used to generate the data to maintain the chord
length and, thus, a larger Rp to maintain the overall transit
depth.

Similarly, for simulated light-curve data from a transiting
oblate planet at high-impact parameter (b > 0:7), the best-
fit spherical model has a lower impact parameter than the
simulated planet to increase the duration of ingress and

egress. For these planets, the fitted spherical parameters
have smaller R� and Rp than the simulated planet to main-
tain the character of the rest of the light curve.

Oblate planets that have impact parameters near the crit-
ical value, b � 0:7, cannot be fitted as easily using a spheri-
cal model because changes in the impact parameter of the fit
cannot increase the duration of ingress and egress. For these
planets, the difference between the oblate planet transit light
curve and the best-fit spherical planet transit light curve is
maximized, providing the largest possible photometric
signal with which to measure oblateness.

At present, it is necessary to fit for R� and stellar limb-
darkening parameters because of our limited knowledge of
these values for the host stars of transiting planets. If R�
was known to sufficient accuracy (less than 1%), then with
knowledge of M�, the degeneracy between R�, Rp, and b
would be broken, allowing measurement of planetary
oblateness without fitting. However, without assumptions
about the stellar mass, knowledge of R� would only help to
constrain M�. Cody & Sasselov (2002) show that, for the
star HD 209458, current evolutionary models combined
with transit data serve to measure the stellar radius to a pre-
cision of only 10%.
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Fig. 6.—Detectable difference between the light curve of an oblate ( f ¼ 0:1) planet and its best-fit spherical model with five parameters: R�, Rp, b, c1, and
c2. As in Fig. 5, differing values for R�,Rp, and b for a spherical planet transit can allow it to mimic the transit of an oblate planet. With the addition of c2, the
fit is much better for planets transiting at low impact parameter. (Top panel: solid line, b ¼ 0:0; dashed line, b ¼ 0:3; dotted line, b ¼ 0:5.Middle panel: solid line,
b ¼ 0:6; dashed line, b ¼ 0:7; dotted line, b ¼ 0:8. Bottom panel: solid line, b ¼ 0:9; dashed line, b ¼ 1:0.) The differences for the five-parameter, like those for the
four-parameter, model vary as f =0:1ð Þ R2
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In Figure 5, we plot the difference between the transit light
curve of a hypothetical planet with the characteristics of
HD 209458b but an oblateness f ¼ 0:1 and that planet’s
best-fit spherical model fitting for R�, Rp, b, and c1. For low
values of the impact parameter, b 
 0:5, the best-fit spheri-
cal light curve emulates the oblate planet’s ingress and
egress while leaving a subtly different transit bottom due to
the planet traversing a differently limb-darkened chord
across the star. The magnitude of the difference is approxi-
mately a factor of 10 smaller than the nonfit difference from
Figure 4. Near the critical impact parameter, b ¼ 0:7, the
transit light curve bottoms are very similar since the best-fit
b is very similar to the actual oblate planet’s impact parame-
ter; however, the ingress and egress differ in flux by a few
parts in 105 for f ¼ 0:1. For grazing transits, b � 1:0, the
best-fit spherical model’s light curve is indistinguishable
from the oblate planet transit light curve, even at the 10�6

relative accuracy level.
Figure 6 shows the same differences as in Figure 5 but

with a second stellar limb-darkening parameter, BCGNB’s
c2, also left as a free parameter in the fit. Including c2 in the
fit allows the fitting algorithm to match the transit bottom
(the time between second and third contacts) better. This
effect leads to excellent fits of oblate planet transits using
spherical planet models and reduces the detectable differ-
ence to less than one part in 105 for 0:0 < b < 0:5 and
b > 0:9 using HD 209458 stellar and planetary radii and an
oblateness of f ¼ 0:1. For b ¼ 0:0 and b ¼ 1:0, the spherical
model emulates an oblate transit particularly well, with the
differences between the two being only a few millionths of
the stellar flux.

In both the four- and five-parameter zero-obliquity
models, it is easiest to measure the effects of oblateness
on the transit light curve for transits near the critical
impact parameter. For HD 209458 values with f ¼ 0:1,
the oblateness signal then approaches 3� 10�5 for tens
of minutes during ingress and egress and peaks near
b ¼ 0:8 instead of the critical value of b ¼ 0:7 due to
the finite radius of HD 209458b relative to its parent
star.

Based on observations of the Sun, Borucki et al. (1997)
expect the intrinsic stellar photometric variability on transit
timescales to be�10�5. Jenkins (2002) used 5 yr of 3 minute
resolution Solar and Heliospheric Observatory (SOHO)
spacecraft data to deduce the noise power spectrum of the
Sun. These noise effects are close enough in magnitude to
the transit signal so as to affect the detectability of a transit-
ing oblate planet.

Future high-precision, space-based photometry missions
such as Microvariability and Oscillations of Stars (MOST)
and Kepler may be able to detect the effect for highly oblate
transiting extrasolar planets, but the signal-to-noise ratio
could be so low as to make unambiguous measurements of
oblateness difficult to obtain.

If an observer were to fit photometric time series data
from a transit of an oblate planet without fitting explicitly
for the oblateness f (as, for instance, if the precision is insuf-
ficient to measure f ), the planet’s oblateness will be manifest
as an astrophysical source of systematic error in the deter-
mination of the other transit parameters. Figure 7 shows the
effect that oblateness has on the stellar radius, planetary
radius, impact parameter, and limb-darkening coefficient
for HD 209458b. This variation is a strong function of the
planet’s impact parameter. In Figure 8, we show how this

systematic variation changes as a function of the initial
impact parameter for the HD 209458b system. As a severe
but still physical example, an HD 209458b–like planet with
oblateness f ¼ 0:1 that transits at b ¼ 0:0 would be mea-
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sured to have radii 2% above actual and an impact parame-
ter nearly 0.3 above the real impact parameter.

5.1.1. HD 209458b

To illustrate the robustness of the degeneracy between
R�, Rp, b, and f discussed in x 5.1, we fit theHST light curve
from BCGNB using a planet with a fixed, large oblateness
of 0.3(!). The best-fit parameters were R� ¼ 1:08 R	,
Rp ¼ 1:26RJup, b ¼ 0:39, and c1 ¼ 0:633 with a reduced
�2 ¼ 1:06—indistinguishable in significance from the spher-
ical planet model! Although unlikely, a high actual oblate-
ness for HD 209458b could alter the measured value for
the planet’s radius into better agreement with theoretical
models.

The expected detectability of oblateness for HD 209458b
is extremely low. During ingress and egress, the transit light
curve for HD 209458b should differ from that of the best-fit
spherical model by only one part in 106 for f ¼ 0:01 and at
the level of 3� 10�7 if f ¼ 0:003. For comparison, the
BCGNBHST photometric precision is 1� 10�4.

Although the systematic error in the determination of
transit parameters can be important for highly oblate plan-
ets, it is not at all significant for HD 209458b. Assuming
HD 209458b has an oblateness of f ¼ 0:003 as calculated in

x 3, the fitted radii are only �0.05% above the actual radii,
and the fitted impact parameter is 0.0006 above what the
actual impact parameter should be.

5.1.2. OGLE-TR-56b

Measuring the oblateness of the new transiting planet
OGLE-TR-56b (Konacki et al. 2003), f ¼ 0:016 (see x 3)
would require photometric precision down to at least
4� 10�6. Since the impact parameter for this object is as yet
unconstrained, the above precision corresponds to b ¼ 0:7.
For other transit geometries, higher precision photometry
would be necessary to measure the oblateness of this object.

5.2. Nonzero Obliquity

We plot the detectability of oblateness and obliquity for
planets with nonzero obliquity in Figure 9. Here we define
the projected obliquity (hereafter referred to as just obliq-
uity) or axial tilt t as the angle between the orbit angular
momentum vector and the rotational angular momentum
vector projected into the sky plane, measured clockwise
from the angular momentum vector (see Fig. 3). The major
effect of nonzero obliquity is to introduce an asymmetry
into the transit light curve (Hui & Seager 2002).
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The plots in Figure 9 are difference plots for planets with
different obliquities and impact parameters, yet all have the
same shape qualitatively. In trying to fit the asymmetric
ingress and egress light curves, the best-fit spherical planet
splits the difference between them. For planets with
0 < t < �=2, this process yields a difference curve that ini-
tially increases as the spherical planet covers the star at a
faster rate than does the oblate planet. Because of the asym-
metric nature of the problem, however, the egress of the
oblate planet takes longer than the spherical one, causing an
initial upturn near third contact. The transit light-curve dif-
ference for planets with 0 > t > ��=2 is equal to the one for
0 < t < �=2 but reversed in time.

This general shape is the same for the asymmetric compo-
nent of each transit light curve, and it is superposed on top
of the symmetric component studied in x 5.1. The asymmet-
ric component is maximized near the critical impact param-
eter (b ¼ 0:7) because the planet crosses the stellar limb with
its projected velocity vector at an angle of �=4 with respect
to the limb. For transits across the middle of the star, b ¼ 0,
the asymmetric component of the light curve vanishes as a
new symmetry around the planet’s path is introduced, and
the local angle between the velocity vector and the limb is
�=2. Similarly the asymmetric planet signal formally goes to
zero for grazing transits at b ¼ 1:0 but, in practice, the
asymmetric component is still high for Jupiter-sized planets.

Planets with obliquities of zero (t ¼ 0) are symmetric and
have no asymmetric light-curve component (see x 5.1).
Likewise, planets with t ¼ �=2 are also symmetric. The
asymmetric component is maximized for planets with
t ¼ �=4.

Transiting planets with nonzero obliquity can break the
degeneracy between transit parameters discussed in x 5.1.
However, when the obliquity is nonzero a degeneracy
between projected obliquity and oblateness is introduced: a
measured asymmetric light-curve component of a given
magnitude could be due to a planet with low oblateness but
near the maximum detectability obliquity of t ¼ �=4, or it
could be the result of a more highly oblate planet with a
lower obliquity. In this case, only a lower limit to the oblate-
ness can be determined based on the oblateness for an
assumed obliquity of �=4. This degeneracy can be broken
with measurements precise enough to determine the sym-
metric light-curve component. In addition, transit photom-
etry is able to measure the projected oblateness and
obliquity only of such objects due to the unknown compo-
nent of obliquity along the line of sight (Hui & Seager 2002).
Therefore, the true oblateness is never smaller than the
measured, projected oblateness.

The asymmetric transit signal of an oblate planet with
nonzero obliquity could also be muddled by the presence of
other bodies orbiting the planet. Orbiting satellites or rings
could both introduce asymmetries into the transit light
curve that may not be easily distinguishable from the asym-
metry resulting from the oblate planet. Satellites around
tidally evolved planets are not stable (Barnes & O’Brien
2002), and rings around these objects may prove to be diffi-
cult to sustain as well. However, objects that are not tidally
evolved, those farther away from their parent stars, may
potentially retain such adornments, and their effects on a

transit light curve could be difficult to differentiate from
oblateness.

Orbital eccentricity can also cause a transit light curve to
be asymmetric. Although the eccentricity of HD 209458b is
zero to within measurement uncertainty based on radial
velocity measurements, future planets discovered solely by
their transits may not have constrained orbital parameters.
For these objects with unknown eccentricity, if the eccen-
tricity is very high, then under some conditions, the velocity
change between ingress and egress may be high enough to
emulate the oblateness asymmetry discussed in this section.
However, we do not explicitly treat that situation in this
paper.

6. CONCLUSIONS

Examining a transiting planet’s precise light curve can
allow the measurement of the planet’s oblateness and, there-
fore, rotation rate, beginning the process of characterizing
extrasolar planets. To a reasonably close approximation (a
few percent), the rotation rate of an extrasolar giant planets
is related to the planet’s oblateness by the Darwin-Radau
relation. Measurements of a planet’s rotation rate could
constrain the tidal dissipation factor Q for those planets as
well as possibly shedding light on the tidal dissipation mech-
anism within giant planets based on the spin-to-orbit ratios
of tidally evolved eccentric planets.

The detectable effect of oblateness on the light curve of a
planet with zero obliquity is at best on the level of a few
parts in 105. This effect may be discernible from space with
ultra high-precision photometry but could prove to be indis-
tinguishable from stellar noise or other confounding effects.
Accurate independent measurements of stellar radius can
break the degeneracy between the stellar radius, planetary
radius, and impact parameter, allowing for much easier
measurement of oblateness. Without such measurements,
the primary effect of oblateness and zero obliquity when
studying transit light curves will be to provide an astrophys-
ical source of systematic error in the measurement of transit
parameters.

Planets with nonzero obliquity have higher detectabilities
(up to �10�4) than planets with no obliquity but yield non-
unique determinations of obliquity and oblateness. In order
to obtain unique obliquities and oblatenesses for these
objects, precision comparable to that needed for the zero
obliquity case is needed.

The detectability of oblateness for transiting planets is
maximized for impact parameters near the critical impact
parameter of b ¼ 0:7. Many transit searches are currently
underway, yielding the potential for the discovery of many
transiting planets in coming years. Given the opportunity to
attempt to measure oblateness, our analysis suggests that
the optimal observational target selection strategy would be
to observe planets around bright stars that transit near an
impact parameter of 0.7.
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